102 research outputs found

    Experimental Results of High-Resolution ISAR Imaging of Ground-Moving Vehicles with a Stationary FMCW Rada

    Get PDF
    In the paper experimental results of ISAR (Inverse Synthetic Aperture Radar) processing obtained with highresolution radar are presented. Targets under observation were ground moving vehicles, such as cars, trucks and tractors. The experiments were performed with a FMCW (Frequency- Modulated Continuous-Wave) radar operating at 94 GHz with almost 1 GHz of bandwidth. Due to the measurement scenario more typical for SAR (Synthetic Aperture Radar), than ISAR, i.e. targets moving along straight line crossing the antenna beam, algorithms usually applied for SAR processing have been used

    Relaxation Methods for Mixed-Integer Optimal Control of Partial Differential Equations

    Full text link
    We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynamics of the system by choosing, for each instant in time, one of the actuators together with ordinary controls. We consider relaxation techniques that are already used successfully for mixed-integer optimal control of ordinary differential equations. Our analysis yields sufficient conditions such that the optimal value and the optimal state of the relaxed problem can be approximated with arbitrary precision by a control satisfying the integer restrictions. The results are obtained by semigroup theory methods. The approach is constructive and gives rise to a numerical method. We supplement the analysis with numerical experiments

    A neighboring extremal solution for an optimal switched impulsive control problem

    Get PDF
    This paper presents a neighboring extremal solution for a class of optimal switched impulsive control problems with perturbations in the initial state, terminal condition and system's parameters. The sequence of mode's switching is pre-specified, and the decision variables, i.e. the switching times and parameters of the system involved, have inequality constraints. It is assumed that the active status of these constraints is unchanged with the perturbations. We derive this solution by expanding the necessary conditions for optimality to first-order and then solving the resulting multiple-point boundary-value problem by the backward sweep technique. Numerical simulations are presented to illustrate this solution method

    Second order optimality conditions and their role in PDE control

    Get PDF
    If f : Rn R is twice continuously differentiable, f’(u) = 0 and f’’(u) is positive definite, then u is a local minimizer of f. This paper surveys the extension of this well known second order suffcient optimality condition to the case f : U R, where U is an infinite-dimensional linear normed space. The reader will be guided from the case of finite-dimensions via a brief discussion of the calculus of variations and the optimal control of ordinary differential equations to the control of nonlinear partial differential equations, where U is a function space. In particular, the following questions will be addressed: Is the extension to infinite dimensions straightforward or will unexpected difficulties occur? How second order sufficient optimality conditions must be modified, if simple inequality constraints are imposed on u? Why do we need second order conditions and how can they be applied? If they are important, are we able to check if they are fulfilled order sufficient optimality condition to the case f : U R, where U is an infinite-dimensional linear normed space. The reader will be guided from the case of finite-dimensions via a brief discussion of the calculus of variations and the optimal control of ordinary differential equations to the control of nonlinear partial differential equations, where U is a function space. In particular, the following questions will be addressed: Is the extension to infinite dimensions straightforward or will unexpected difficulties occur? How second order sufficient optimality conditions must be modified, if simple inequality constraints are imposed on u? Why do we need second order conditions and how can they be applied? If they are important, are we able to check if they are fulfilled? It turns out that infinite dimensions cause new difficulties that do not occur in finite dimensions. We will be faced with the surprising fact that the space, where f’’(u) exists can be useless to ensure positive definiteness of the quadratic form v f’’(u)v2. In this context, the famous two-norm discrepancy, its consequences, and techniques for overcoming this difficulty are explained. To keep the presentation simple, the theory is developed for problems in function spaces with simple box constraints of the form a = u = ß. The theory of second order conditions in the control of partial differential equations is presented exemplarily for the nonlinear heat equation. Different types of critical cones are introduced, where the positivity of f’’(u) must be required. Their form depends on whether a so-called Tikhonov regularization term is part of the functional f or not. In this context, the paper contains also new results that lead to quadratic growth conditions in the strong sense. As a first application of second-order sufficient conditions, the stability of optimal solutions with respect to perturbations of the data of the control problem is discussed. Second, their use in analyzing the discretization of control problems by finite elements is studied. A survey on further related topics, open questions, and relevant literature concludes the paper.The first author was partially supported by the Spanish Ministerio de Economía y Competitividad under project MTM2011-22711, the second author by DFG in the framework of the Collaborative Research Center SFB 910, project B6

    1-Chlorobutane C4H9Cl + C6H12 Cyclohexane

    No full text

    Vapor-Liquid Equilibrium of the Mixture C4H10O + C8H16 (LB4626, EVLM 1131)

    No full text

    1-Chlorobutane C4H9Cl + C6H6 Benzene

    No full text

    Vapor-Liquid Equilibrium of the Mixture C7H6O + C9H12 (LB4625, EVLM 1131)

    No full text
    • …
    corecore