114 research outputs found

    Integrating the selection of PHA storing biomass and nitrogen removal via nitrite for the treatment of the sludge reject water

    Get PDF
    Integrating the selection of PHA storing biomass and nitrogen removal via-nitrite for the treatment of the sludge reject wate

    Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects

    Get PDF
    COST Action ES1202: Conceiving Wastewater Treatment in 2020 - Energetic, environmental and economic challenges (Water_2020), supported by COST (European Cooperation in Science and Technology)

    Development of a Novel Process Integrating the Treatment of Sludge Reject Water and the Production of Polyhydroxyalkanoates (PHAs)

    Get PDF
    The Supporting Information is available free of charge on the ACS Publications website at DOI: https://doi.org/10.1021/acs.est.5b01776This study was carried out within the framework of the European projects LIVE WASTE (LIFE 12 ENV/CY/000544)

    Technical and environmental evaluation of an integrated scheme for the co-treatment of wastewater and domestic organic waste in small communities

    Get PDF
    This research was supported by the EU projects: LIFE+ LIVE-WASTE (LIFE 12 ENV/CY/000544) and PIONEER (PCIN-2015-227) and by the BBVA programme “2015 edition of the BBVA Foundation Grants for Researchers and Cultural Creators” (2015-PO027). L. Lijó would like to thank the COST Action ES1202 for a Short Term Scientific Mission grant. Dr. S. González-Garcia would like to express her gratitude to the Spanish Ministry of Economy and Competitivity for financial support (Grants references JCI-2012-11898 and RYC-2014-14984). The authors (L. Lijó, S. González-García and M.T. Moreira) belong to CRETUS (AGRUP2015/02) and the Galician Competitive Research Group GRC 2013-032.This research was supported by the EU projects: LIFE+ LIVE-WASTE (LIFE 12 ENV/CY/000544) and PIONEER (PCIN-2015-227) and by the BBVA programme “2015 edition of the BBVA Foundation Grants for Researchers and Cultural Creators” (2015-PO027). L. Lijó would like to thank the COST Action ES1202 for a Short Term Scientific Mission grant. Dr. S. González-Garcia would like to express her gratitude to the Spanish Ministry of Economy and Competitivity for financial support (Grants references JCI-2012-11898 and RYC-2014-14984). The authors (L. Lijó, S. González-García and M.T. Moreira) belong to CRETUS (AGRUP2015/02) and the Galician Competitive Research Group GRC 2013-032

    The effect of initial pH and retention time on boron removal by continuous electrocoagulation process

    Get PDF
    In this study, factors influencing boron removal via the continuous electrocoagulation process were investigated at lab-scale. Different influent pH values (4, 5, 6, 7.45 and 9) and contact times (10, 25, 50 and 100 min) were examined as variable parameters. Plate-type aluminium electrodes with 5 mm distance between them were used. All the experiments were conducted in continuous mode and the current density was kept constant at 5 A throughout the whole experimental period. The initial boron concentration was selected to be 1000 mg L-1. The first set of experiments concerning the influence of the influent pH showed that the highest boron removal (67%) was obtained at pH=6 since it was the optimal pH for boron precipitation through aluminium borate formation. Under the constant current density of the study and with the initial pH adjusted to 6, increasing the duration of the electrocoagulation process from 10 to 100 min resulted in raising the boron removal from 45 to 79% during the second set of experiments. The greater duration of the electrocagulation process enabled higher aluminium dissolution, thus allowing the existence of a higher number of coagulants within the reactor. Moreover, it enhanced boron precipitation because of the longer contact time between the boron ions and the coagulants. After optimizing significant parameters such as the influent pH and the electrocagulation duration, the continuous electrocoagulation process was found to constitute an effective alternative for boron removal

    Anaerobic Membrane Bioreactors for Municipal Wastewater Treatment: A Literature Review

    Get PDF
    Copyright: © 2021 by the authors. Currently, there is growing scientific interest in the development of more economic, efficient and environmentally friendly municipal wastewater treatment technologies. Laboratory and pilot-scale surveys have revealed that the anaerobic membrane bioreactor (AnMBR) is a promising alternative for municipal wastewater treatment. Anaerobic membrane bioreactor technology combines the advantages of anaerobic processes and membrane technology. Membranes retain colloidal and suspended solids and provide complete solid–liquid separation. The slow-growing anaerobic microorganisms in the bioreactor degrade the soluble organic matter, producing biogas. The low amount of produced sludge and the production of biogas makes AnMBRs favorable over conventional biological treatment technologies. However, the AnMBR is not yet fully mature and challenging issues remain. This work focuses on fundamental aspects of AnMBRs in the treatment of municipal wastewater. The important parameters for AnMBR operation, such as pH, temperature, alkalinity, volatile fatty acids, organic loading rate, hydraulic retention time and solids retention time, are discussed. Moreover, through a comprehensive literature survey of recent applications from 2009 to 2021, the current state of AnMBR technology is assessed and its limitations are highlighted. Finally, the need for further laboratory, pilot- and full-scale research is addressed.Nazarbayev University, the Republic of Kazakhstan, grant number 110119FD4533

    Surface water filtration using granular media and membranes: A review

    Get PDF
    Significant growth of the human population is expected in the future. Hence, the pressure on the already scarce natural water resources is continuously increasing. This work is an overview of membrane and filtration methods for the removal of pollutants such as bacteria, viruses and heavy metals from surface water. Microfiltration/Ultrafiltration (MF/UF) can be highly effective in eliminating bacteria and/or act as pre-treatment before Nanofiltration/Reverse Osmosis (NF/RO) to reduce the possibility of fouling. However, MF/UF membranes are produced through relatively intensive procedures. Moreover, they can be modified with chemical additives to improve their performance. Therefore, MF/UF applicability in less developed countries can be limited. NF shows high removal capability of certain contaminants (e.g. pharmaceutically active compounds and ionic compounds). RO is necessary for desalination purposes in areas where sea water is used for drinking/sanitation. Nevertheless, NF/RO systems require pre-treatment of the influent, increased electrical supply and high level of technical expertise. Thus, they are often a highly costly addition for countries under development. Slow Sand Filtration (SSF) is a simple and easy-to-operate process for the retention of solids, microorganisms and heavy metals; land use is a limiting factor, though. Rapid Sand Filtration (RSF) is an alternative responding to the need for optimized land use. However, it requires prior and post treatment stages to prevent fouling. Especially after coating with metal-based additives, sand filtration can constitute an efficient and sustainable treatment option for developing countries. Granular activated carbon (GAC) adsorbs organic compounds that were not filtered in previous treatment stages. It can be used in conjunction with other methods (e.g. MF and SSF) to face pollution that results from potentially outdated water network (especially in less developed areas) and, hence, produce water of acceptable drinking quality. Future research can focus on the potential of GAC production from alternative sources (e.g. municipal waste). Given the high production/operation/maintenance cost of the NF/RO systems, more cost-effective but equally effective alternatives can be implemented: e.g. (electro)coagulation/flocculation followed by MF/UF, SSF before/after MF/UF, MF/UF before GAC

    Vermiculite bio-barriers for Cu and Zn remediation: an eco-friendly approach for freshwater and sediments protection

    Get PDF
    The increase in heavy metal contamination in freshwater systems causes serious environmental problems in most industrialized countries, and the effort to find ecofriendly techniques for reducing water and sediment contamination is fundamental for environmental protection. Permeable barriers made of natural clays can be used as low-cost and eco-friendly materials for adsorbing heavy metals from water solution and thus reducing the sediment contamination. This study discusses the application of permeable barriers made of vermiculite clay for heavy metals remediation at the interface between water and sediments and investigates the possibility to increase their efficiency by loading the vermiculite surface with a microbial biofilm of Pseudomonas putida, which is well known to be a heavy metal accumulator. Some batch assays were performed to verify the uptake capacity of two systems and their adsorption kinetics, and the results indicated that the vermiculite bio-barrier system had a higher removal capacity than the vermiculite barrier (?34.4 and 22.8 % for Cu and Zn, respectively). Moreover, the presence of P. putida biofilm strongly contributed to fasten the kinetics of metals adsorption onto vermiculite sheets. In open-system conditions, the presence of a vermiculite barrier at the interface between water and sediment could reduce the sediment contamination up to 20 and 23 % for Cu and Zn, respectively, highlighting the efficiency of these eco-friendly materials for environmental applications. Nevertheless, the contribution of microbial biofilm in open-system setup should be optimized, and some important considerations about biofilm attachment in a continuous-flow system have been discussed.This work has been produced thanks to the collaboration of Dip.SA (University of Bologna) and IBB (University of Minho). A particular acknowledgment is due to Dr. E. Rosales. The work was partially financed by the FCT Strategic Project Pest-OE/EQB/LA0023 and the Project ‘‘BioEnv—Biotechnology and Bioengineering for a sustainable world,’’ co-funded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER
    corecore