72 research outputs found

    The Motion of a Body in Newtonian Theories

    Get PDF
    A theorem due to Bob Geroch and Pong Soo Jang ["Motion of a Body in General Relativity." Journal of Mathematical Physics 16(1), (1975)] provides the sense in which the geodesic principle has the status of a theorem in General Relativity (GR). Here we show that a similar theorem holds in the context of geometrized Newtonian gravitation (often called Newton-Cartan theory). It follows that in Newtonian gravitation, as in GR, inertial motion can be derived from other central principles of the theory.Comment: 12 pages, 1 figure. This is the version that appeared in JMP; it is only slightly changed from the previous version, to reflect small issue caught in proo

    Conformal proper times according to the Woodhouse causal axiomatics of relativistic spacetimes

    Full text link
    On the basis of the Woodhouse causal axiomatics, we show that conformal proper times and an extra variable in addition to those of space and time, precisely and physically identified from experimental examples, together give a physical justification for the `chronometric hypothesis' of general relativity. Indeed, we show that, with a lack of these latter two ingredients, no clock paradox solution exists in which the clock and message functions are solely at the origin of the asymmetry. These proper times originate from a given conformal structure of the spacetime when ascribing different compatible projective structures to each Woodhouse particle, and then, each defines a specific Weylian sheaf structure. In addition, the proper time parameterizations, as two point functions, cannot be defined irrespective of the processes in the relative changes of physical characteristics. These processes are included via path-dependent conformal scale factors, which act like sockets for any kind of physical interaction and also represent the values of the variable associated with the extra dimension. As such, the differential aging differs far beyond the first and second clock effects in Weyl geometries, with the latter finally appearing to not be suitable.Comment: 25 pages, 2 figure

    Time-of-arrival formalism for the relativistic particle

    Get PDF
    A suitable operator for the time-of-arrival at a detector is defined for the free relativistic particle in 3+1 dimensions. For each detector position, there exists a subspace of detected states in the Hilbert space of solutions to the Klein Gordon equation. Orthogonality and completeness of the eigenfunctions of the time-of-arrival operator apply inside this subspace, opening up a standard probabilistic interpretation.Comment: 16 pages, no figures, uses LaTeX. The section "Interpretation" has been completely rewritten and some errors correcte

    Proper time and Minkowski structure on causal graphs

    Get PDF
    For causal graphs we propose a definition of proper time which for small scales is based on the concept of volume, while for large scales the usual definition of length is applied. The scale where the change from "volume" to "length" occurs is related to the size of a dynamical clock and defines a natural cut-off for this type of clock. By changing the cut-off volume we may probe the geometry of the causal graph on different scales and therey define a continuum limit. This provides an alternative to the standard coarse graining procedures. For regular causal lattice (like e.g. the 2-dim. light-cone lattice) this concept can be proven to lead to a Minkowski structure. An illustrative example of this approach is provided by the breather solutions of the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure

    Generation of Closed Timelike Curves with Rotating Superconductors

    Get PDF
    The spacetime metric around a rotating SuperConductive Ring (SCR) is deduced from the gravitomagnetic London moment in rotating superconductors. It is shown that theoretically it is possible to generate Closed Timelike Curves (CTC) with rotating SCRs. The possibility to use these CTC's to travel in time as initially idealized by G\"{o}del is investigated. It is shown however, that from a technology and experimental point of view these ideas are impossible to implement in the present context.Comment: 9 pages. Submitted to Classical and Quantum Gravit

    The structure of causal sets

    Get PDF
    More often than not, recently popular structuralist interpretations of physical theories leave the central concept of a structure insufficiently precisified. The incipient causal sets approach to quantum gravity offers a paradigmatic case of a physical theory predestined to be interpreted in structuralist terms. It is shown how employing structuralism lends itself to a natural interpretation of the physical meaning of causal sets theory. Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to illustrate how a mathematically informed rigorous conceptualization of structure serves to identify structures in physical theories. Furthermore, a number of technical issues infesting structuralist interpretations of physical theories such as difficulties with grounding the identity of the places of highly symmetrical physical structures in their relational profile and what may resolve these difficulties can be vividly illustrated with causal sets.Comment: 19 pages, 4 figure

    Standard and Generalized Newtonian Gravities as ``Gauge'' Theories of the Extended Galilei Group - I: The Standard Theory

    Full text link
    Newton's standard theory of gravitation is reformulated as a {\it gauge} theory of the {\it extended} Galilei Group. The Action principle is obtained by matching the {\it gauge} technique and a suitable limiting procedure from the ADM-De Witt action of general relativity coupled to a relativistic mass-point.Comment: 51 pages , compress, uuencode LaTex fil

    Decoherence, the measurement problem, and interpretations of quantum mechanics

    Get PDF
    Environment-induced decoherence and superselection have been a subject of intensive research over the past two decades, yet their implications for the foundational problems of quantum mechanics, most notably the quantum measurement problem, have remained a matter of great controversy. This paper is intended to clarify key features of the decoherence program, including its more recent results, and to investigate their application and consequences in the context of the main interpretive approaches of quantum mechanics.Comment: 41 pages. Final published versio

    Synchronization Gauges and the Principles of Special Relativity

    Full text link
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of `theories' that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl synchronization gauge and, finally, to the even more general Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all these gauges do not challenge the SRT, as claimed by Selleri, but simply lead to a number of formalisms which leave the geometrical structure of Minkowski spacetime unchanged. Several aspects of fundamental and applied interest related to the conventional aspect of the synchronization choice are discussed, encompassing the issue of the one-way velocity of light on inertial and rotating reference frames, the GPS's working, and the recasting of Maxwell equations in generic synchronizations. Finally, it is showed how the gauge freedom introduced in SRT can be exploited in order to give a clear explanation of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday

    Causal categories: relativistically interacting processes

    Full text link
    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a `causal category'. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.Comment: 43 pages, lots of figure
    corecore