1,085 research outputs found

    Bosonic Spectral Function and The Electron-Phonon Interaction in HTSC Cuprates

    Get PDF
    In Part I we discuss accumulating experimental evidence related to the structure and origin of the bosonic spectral function in high-temperature superconducting (HTSC) cuprates at and near optimal doping. Some global properties of the spectral function, such as number and positions of peaks, are extracted by combining optics, neutron scattering, ARPES and tunnelling measurements. These methods give convincing evidence for strong electron-phonon interaction (EPI) with the coupling constant between 1-3 in cuprates near optimal doping. Here we clarify how these results are in favor of the Eliashberg-like theory for HTSC cuprates near optimal doping. In Part II we discuss some theoretical ingredients - such as strong EPI, strong correlations - which are necessary to explain the experimental results related to the mechanism of d-wave pairing in optimally doped cuprates. These comprise the Migdal-Eliashberg theory for EPI in strongly correlated systems which give rise to the forward scattering peak. The latter is further supported by the weakly screened Madelung interaction in the ionic-metallic structure of layered cuprates. In this approach EPI is responsible for the strength of pairing while the residual Coulomb interaction (by including spin fluctuations) triggers the d-wave pairing.Comment: 59 pages, 38 figures, review articl

    Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-Tc

    Full text link
    Ab initio linear-response calculations are reported of the phonon spectra and the electron-phonon interaction for several transition metal carbides and nitrides in a NaCl-type structure. For NbC, the kinetic, optical, and superconducting properties are calculated in detail at various pressures and the normal-pressure results are found to well agree with the experiment. Factors accounting for the relatively low critical temperatures Tc in transition metal compounds with light elements are considered and the possible ways of increasing Tc are discussed.Comment: 19 pages, 7 figure

    Critical temperature and giant isotope effect in presence of paramagnons

    Get PDF
    We reconsider the long-standing problem of the effect of spin fluctuations on the critical temperature and isotope effect in a phonon-mediated superconductor. Although the general physics of the interplay between phonons and paramagnons had been rather well understood, the existing approximate formulas fail to describe the correct behavior of % T_{c} for general phonon and paramagnon spectra. Using a controllable approximation, we derive an analytical formula for TcT_{c} which agrees well with exact numerical solutions of the Eliashberg equations for a broad range of parameters. Based on both numerical and analytical results, we predict a strong enhancement of the isotope effect when the frequencies of spin fluctuation and phonons are of the same order. This effect may have important consequences for near-magnetic superconductors such as MgCNi3_{3}Comment: 5 pages, 2 figure

    ETEKOS experimental ecological system

    Get PDF
    The problem of changes in the ecology resulting, for example, in increases in water temperature because of discharges from large thermal power plants is considered. An experiment creating a model of such an ecological system is described

    Interfacial dynamics in transport-limited dissolution

    Full text link
    Various model problems of ``transport-limited dissolution'' in two dimensions are analyzed using time-dependent conformal maps. For diffusion-limited dissolution (reverse Laplacian growth), several exact solutions are discussed for the smoothing of corrugated surfaces, including the continuous analogs of ``internal diffusion-limited aggregation'' and ``diffusion-limited erosion''. A class of non-Laplacian, transport-limited dissolution processes are also considered, which raise the general question of when and where a finite solid will disappear. In a case of dissolution by advection-diffusion, a tilted ellipse maintains its shape during collapse, as its center of mass drifts obliquely away from the background fluid flow, but other initial shapes have more complicated dynamics.Comment: 5 pages, 4 fig

    Erythrocytes as regulators of blood vessel tone

    Get PDF
    A drop in oxygen partial pressure results in elevation of blood vessel diameter. It has been demonstrated that isolated vessels exhibit this unique feature only when they are perfused in the presence of erythrocytes. More recently, it was shown that haemoglobin plays a key role in oxygen sensing. Its deoxygenated form interacts with band 3 protein, triggering the cascade of non-identified intracellular signals involved in nitric oxide production and release of ATP interacting with P2Y purinergic receptors in endothelial cells. In this review, we summarize the data on mechanisms of ATP release from erythrocytes, as well as on its physiological and pathophysiological implications

    Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slab

    Get PDF
    We study the polarization properties of light emitted by quantum dots that are embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the wave\-guide layer has been shown to result in a high circular polarization degree ρc\rho_c of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of ρc|\rho_c| is predicted to exceed 98%. The experimentally achieved value of ρc=81|\rho_c|=81% is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretical prediction
    corecore