25 research outputs found

    Identifying SARS-CoV2 transmission cluster category: An analysis of country government database

    Get PDF
    Background: As a result of the high contagiousness and transmissibility of SARS-CoV-2, studying the location of the case clusters that will follow, will help understand the risk factors related to the disease transmission. In this study, we aim to identify the transmission cluster category and settings that can guide decision-makers which areas to be opened again.Methods: A thorough review of the literature and the media articles were performed. After data verification, we included cluster data from eight countries as of 16th May 2020. Clusters were further categorized into 10 categories and analysis was performed. The data was organized and presented in an easily accessible online sheet.Results: Among the eight included countries, we have found 3905 clusters and a total number of 1,907,944 patients. Indoor settings (mass accommodation and residential facilities) comprised the highest number of both number of clusters (3315/3905) and infected patients (1,837,019/1,907,944), while the outdoor ones comprised 590 clusters and 70,925 patients. Mass accommodation was associated with the highest number of cases in 5 of the 7 countries with data available. Social events and residential settings were responsible for the highest number of cases in the two remaining countries. In the USA, workplace facilities have reported 165 clusters of infection including 122 food production facilities.Conclusions: Lockdown could truly be a huge burden on a country’s economy. However, with the proper knowledge concerning the transmissibility and the behaviour of the disease, better decisions could be made to guide the appropriate removal of lockdown across the different fields and regions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    COYOTE OPTIMIZATION ALGORITHM FOR PARAMETERS ESTIMATION OF VARIOUS MODELS OF SOLAR CELLS AND PV MODULES

    No full text
    Recently, building an accurate mathematical model with the help of the experimentally measured data of solar cells and Photovoltaic (PV) modules, as a tool for simulation and performance evaluation of the PV systems, has attracted the attention of many researchers. In this work, Coyote Optimization Algorithm (COA) has been applied for extracting the unknown parameters involved in various models for the solar cell and PV modules, namely single diode model, double diode model, and three diode model. The choice of COA algorithm for such an application is made because of its good tracking characteristics and the balance creation between the exploration and exploitation phases. Additionally, it has only two control parameters and such a feature makes it very simple in application. The Root Mean Square Error (RMSE) value between the data based on the optimized parameters for each model and those based on the measured data of the solar cell and PV modules is adopted as the objective function. Parameters’ estimation for various types of PV modules (mono-crystalline, thin-film, and multi-crystalline) under different operating scenarios such as a change in intensity of solar radiation and cell temperature is studied. Furthermore, a comprehensive statistical study has been performed to validate the accurateness and stability of the applied COA as a competitor to other optimization algorithms in the optimal design of PV module parameters. Simulation results, as well as the statistical measurement, validate the superiority and the reliability of the COA algorithm not only for parameter extraction of different PV modules but also under different operating scenarios. With the COA, precise PV models have been established with acceptable RMSE of 7.7547×10−4 , 7.64801×10−4 , and 7.59756 × 10−4 for SDM, DDM, and TDM respectively considering R.T.C. France solar cell

    Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems

    No full text
    Modern electrical power systems now require the spread of microgrids (MG), where they would be operating in either islanded mode or grid-connected mode. An inherent mismatch between loads and sources is introduced by changeable high renewable share in an islanded MG system with stochastic load demands. The system frequency is directly impacted by this mismatch, which can be alleviated by incorporating cutting-edge energy storage technologies and FACTS tools. The investigated islanded MG system components are wind farm, solar PV, Electric vehicles (EVs), loads, DSTATCOM, and diesel power generator. An aggregated EVs model is connected to the MG during uncertain periods of the generation of renewable energy (PV and wind) to support the performance of MGs. The ability to support ancillary services from the EVs is checked. DSTATCOM is used to provide voltage stability for the MG during congestion situations. The MG is studied in three scenarios: the first scenario MG without EVs and DSTATCOM, the second scenario MG without DSTATCOM, and the third scenario MG with all components. These scenarios are addressed to show the role of EVs and DSTATCOM, and the results in the third scenario are the best. The system voltage and frequency profile is the best in the last scenario and is entirely satisfactory and under the range of the IEEE standard. The obtained results show that both EVs and DSTATCOM are important units for improving the stability of modern power grids. The Matlab/Simulink program is considered for checking and validating the dynamic performance of the proposed configuration

    Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems

    No full text
    Modern electrical power systems now require the spread of microgrids (MG), where they would be operating in either islanded mode or grid-connected mode. An inherent mismatch between loads and sources is introduced by changeable high renewable share in an islanded MG system with stochastic load demands. The system frequency is directly impacted by this mismatch, which can be alleviated by incorporating cutting-edge energy storage technologies and FACTS tools. The investigated islanded MG system components are wind farm, solar PV, Electric vehicles (EVs), loads, DSTATCOM, and diesel power generator. An aggregated EVs model is connected to the MG during uncertain periods of the generation of renewable energy (PV and wind) to support the performance of MGs. The ability to support ancillary services from the EVs is checked. DSTATCOM is used to provide voltage stability for the MG during congestion situations. The MG is studied in three scenarios: the first scenario MG without EVs and DSTATCOM, the second scenario MG without DSTATCOM, and the third scenario MG with all components. These scenarios are addressed to show the role of EVs and DSTATCOM, and the results in the third scenario are the best. The system voltage and frequency profile is the best in the last scenario and is entirely satisfactory and under the range of the IEEE standard. The obtained results show that both EVs and DSTATCOM are important units for improving the stability of modern power grids. The Matlab/Simulink program is considered for checking and validating the dynamic performance of the proposed configuration

    Vaccine acceptance, determinants, and attitudes toward vaccine among people experiencing homelessness: a systematic review and meta-analysis

    No full text
    Background: COVID-19 has caused millions of deaths globally, with vulnerable populations such as people experi‑encing homelessness (PEH) at higher risk. This systematic review and meta-analysis aims to identify the prevalence and key factors contributing to vaccine acceptance experienced by PEH. Methods: The protocol of this study was registered in PROSPERO (CRD42023391659). We included studies that reported relevant information about vaccine acceptance or vaccine hesitant/refusal among PEH. Eight databases were systematically searched in January 2023. Meta-analysis was conducted for the prevalence of vaccine accept‑ance, vaccine uptake, and factors associated with vaccine acceptance. Attitudes toward vaccines were combined into bar charts. Result: A total of 29 papers were included in this systematic review and 19 papers were included for meta-analysis. The pooled prevalence of COVID-19 vaccine acceptance among PEH was 66% (95%CI: 58%-73%). Our metaregression showed vaccine acceptance was signifcantly increased over time. Moreover, subgroup meta-analysis showed that PEH were more likely to accept the COVID-19 vaccine after June 2021 (78%, 95%CI: 65%-86%) compared with earlier period 56%, 95%CI: 54%-59%). Subgroup meta-analysis also revealed that women and participants without underlying medical condition (chronic diseases) were signifcantly less likely to accept the COVID-19 vaccine, compared to men and those with medical conditions, respectively. Conclusion: The study emphasizes the need for targeted public health interventions aimed at increasing vaccine acceptance among PEH, especially at the early stage of the pandemic, among females, those without underlying medical conditions, being Black (in Canada and the USA), and young people. These interventions should address the common concerns of vaccine safety, adverse efects, efectiveness, and distrust in health care systems. In addition to ofering vaccinations in diferent areas convenient to them, education programs could be established to increase vaccine acceptance among PEH.BMC Infectious Diseases, 23(1), art. no. 880; 202

    Examining the interplay between cardiovascular disease and cancer incidence: Data from NHANES III and continuous

    No full text
    Introduction: This study aimed to investigate the relationship between risk factors of cancer among individuals with existing cardiovascular disease (CVD). Methods: The analysis included 438 and 2100 CVD patients aged 65+ from NHANES-III and Continuous datasets, respectively. Competing risk models with subdistribution hazards ratio (aHR) were used to identify risk factors. Results: Females in NHANES-III had lower cancer risk (aHR 0.39, P = 0.001) compared to males. Poor physical activity was associated with increased cancer risk in both datasets (aHR 2.59 in NHANES-III, aHR 1.59 in Continuous). In NHANES-Continuous, age (aHR 1.07, P < 0.001) and current smoking (aHR 2.55, P = 0.001) also showed a significant association with developing cancer. No other factors investigated showed significant associations. Discussion: This study highlights the interplay between traditional risk factors and the elevated risk of cancer in CVD patients. Further research with larger samples and wider age ranges is needed to solidify these findings and inform intervention strategies
    corecore