166 research outputs found

    Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice

    Get PDF
    Bone pain is one of the most common and life-limiting complications of cancer metastasis to bone. Although the mechanism of bone pain still remains poorly understood, bone pain is evoked as a consequence of sensitization and excitation of sensory nerves (SNs) innervating bone by noxious stimuli produced in the microenvironment of bone metastases. We showed that bone is innervated by calcitonin gene-related protein (CGRP)+ SNs extending from dorsal root ganglia (DRG), the cell body of SNs, in mice. Mice intratibially injected with Lewis lung cancer (LLC) cells showed progressive bone pain evaluated by mechanical allodynia and flinching with increased CGRP+ SNs in bone and augmented SN excitation in DRG as indicated by elevated numbers of pERK- and pCREB-immunoreactive neurons. Immunohistochemical examination of LLC-injected bone revealed that the tumor microenvironment is acidic. Bafilomycin A1, a selective inhibitor of H+ secretion from vacuolar proton pump, significantly alleviated bone pain, indicating that the acidic microenvironment contributes to bone pain. We then determined whether the transient receptor potential vanilloid 1 (TRPV1), a major acid-sensing nociceptor predominantly expressed on SNs, plays a role in bone pain by intratibially injecting LLC cells in TRPV1-deficient mice. Bone pain and SN excitation in the DRG and spinal dorsal horn were significantly decreased in TRPV1 −/− mice compared with wild-type mice. Our results suggest that TRPV1 activation on SNs innervating bone by the acidic cancer microenvironment in bone contributes to SN activation and bone pain. Targeting acid-activated TRPV1 is a potential therapeutic approach to cancer-induced bone pain

    Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fluorescence image

    Get PDF
    The potential of UV-induced fluorescence imaging was investigated as a non-destructive tool to monitor postharvest quality degradation of tomatoes harvested at the red stage and stored at 25 °C. The fluorescence images (excitation at 365 nm) were found to be a better indicator of tomato quality degradation than color images after color saturation. Tomatoes were stored at 25 °C for 9 d. The changes in color and fluorescence of tomato were evaluated by two types of images: Color and fluorescence images. A conventional colorimeter was also used for as a reference. Changes in the RGB ratio for these two types of images were opposite. In the color images, the G ratio decreased rapidly for the initial 3 or 5 d and then stabilized afterwards. On the other hand, in the fluorescence images, the G ratio increased continuously up to 9 d. Given that temperature conditions during transportation and storage of tomatoes is not always ideal, the results from this research provide the foundation for developing a postharvest monitoring system of mature tomato quality degradation

    Therapeutic regimen of l-arginine for MELAS: 9-year, prospective, multicenter, clinical research

    Get PDF
    ObjectiveTo examine the efficacy and safety of the therapeutic regimen using oral and intravenous l-arginine for pediatric and adult patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS).MethodsIn the presence and absence of an ictus of stroke-like episodes within 6 h prior to efficacy assessment, we correspondingly conducted the systematic administration of oral and intravenous l-arginine to 15 and 10 patients with MELAS in two, 2-year, prospective, multicenter clinical trials at 10 medical institutions in Japan. Subsequently, patients were followed up for 7 years. The primary endpoint in the clinical trial of oral l-arginine was the MELAS scale, while that for intravenous l-arginine was the improvement rates of headache and nausea/vomiting at 2 h after completion of the initial intravenous administration. The relationships between the ictuses of stroke-like episodes and plasma arginine concentrations were examined.ResultsOral l-arginine extended the interictal phase (p = 0.0625) and decreased the incidence and severity of ictuses. Intravenous l-arginine improved the rates of four major symptoms—headache, nausea/vomiting, impaired consciousness, and visual disturbance. The maximal plasma arginine concentration was 167 μmol/L when an ictus developed. Neither death nor bedriddenness occurred during the 2-year clinical trials, and the latter did not develop during the 7-year follow-up despite the progressively neurodegenerative and eventually life-threatening nature of MELAS. No treatment-related adverse events occurred, and the formulations of l-arginine were well tolerated.ConclusionsThe systematic administration of oral and intravenous l-arginine may be therapeutically beneficial and clinically useful for patients with MELAS

    抗PD-1抗体への化学療法の併用はmyeloid-derived suppressor cellsを減少させることにより中皮腫の増殖を抑制する

    Get PDF
    Background: The combination of anti-PD-1/PD-L1 antibody with chemotherapy has been approved for the first-line therapy of lung cancer. However, the effects against malignant mesothelioma (MPM) and the immunological mechanisms by which chemotherapy enhances the effect of targeting PD-1/PD-L1 in MPM are poorly understood. Materials and Methods: We utilized syngeneic mouse models of MPM and lung cancer and assessed the therapeutic effects of anti-PD-1 antibody and its combination with cisplatin (CDDP) and pemetrexed (PEM). An immunological analysis of tumor-infiltrating cells was performed with immunohistochemistry. Results: We observed significant therapeutic effects of anti-PD-1 antibody against MPM. Although the effect was associated with CD8+ and CD4+ T cells in tumors, the number of Foxp3+ cells was not reduced but rather increased. Consequently, combination with CDDP/PEM significantly enhanced the antitumor effects of anti-PD-1 antibody by decreasing numbers of intratumoral myeloid-derived suppressor cells (MDSCs) and vessels probably through suppression of VEGF expression by CDDP+PEM. Conclusions: The combination of anti-PD-1 antibody with CDDP+PEM may be a promising therapy for MPM via inhibiting the accumulation of MDSCs and vessels in tumors

    BLOCKADE OF PD-1/PD-L1 ENHANCES APC FUNCTION OF FIBROCYTES

    Get PDF
    Fibrocytes, a distinct population of collagen-producing, monocyte-derived cells, are involved in wound healing as well as fibrotic diseases. Recently, fibrocytes have been revealed to play a role in the tumor microenvironment, particularly under antiangiogenic therapy. In addition, combination cancer immunotherapy with immune checkpoint inhibitor and antiangiogenic agents have been developed for various cancers in the clinical setting, although the immunological background is not clear. In the current study, we aimed to determine the function of fibrocytes in tumor immunity induced by immune checkpoint inhibitor therapy. Human and murine fibrocytes were generated from PBMCs and lungs, respectively. The expression of costimulatory and inhibitory molecules on fibrocytes was examined by flow cytometry. The stimulation of CD8+ T cells by fibrocytes was examined in MLRs with a 3H-thymidine incorporation assay. Fibrocytes expressed CD80low and CD86high as a costimulatory molecule, and expressed PD-L1high, but not PD-L2, as a coinhibitory molecule.Without any stimulation, fibrocytes strongly enhanced the proliferation of CD8+ T cells in mice and humans. Treatment with anti-CD86 and -CD54 Abs inhibited the growth of CD8+ T cells induced by fibrocytes. Anti–PD-L1 Ab further enhanced the proliferation of CD8+ T cells, even in the OVA-specific MLR with OT-1Rag-/- mice. Importantly, fibrocytes derived from PBMCs of patients with lung adenocarcinoma or murine MC38 tumors augmented the proliferation of CD8+ T cells with PD-L1 blockade. These results suggest that fibrocytes infiltrating tumor sites may play a role in the antitumor immunity mediated by CD8+ T cells when the activity is further enhanced by PD-L1/PD-1 blockade

    Identification of a Major Lipid Droplet Protein in a Marine Diatom Phaeodactylum tricornutum

    Get PDF
    Various kinds of organisms, including microalgae, accumulate neutral lipids in distinct intracellular compartments called lipid droplets. Generally, lipid droplets are generated from the endoplasmic reticulum, and particular proteins localize on their surface. Some of these proteins function as structural proteins to prevent fusion between the lipid droplets, and the others could have an enzymatic role or might be involved in intracellular membrane trafficking. However, information about lipid droplet proteins in microalgae is scarce as compared with that in animals and land plants. We focused on the oil-producing, marine, pennate diatom Phaeodactylum tricornutum that forms lipid droplets during nitrogen deprivation and we investigated the proteins located on the lipid droplets. After 6 d of cultivation in a nitrate-deficient medium, the mature lipid droplets were isolated by sucrose density gradient centrifugation. Proteomic analyses revealed five proteins, with Stramenopile-type lipid droplet protein (StLDP) being the most abundant protein in the lipid droplet fraction. Although the primary sequence of StLDP did not have homology to any known lipid droplet proteins, StLDP had a central hydrophobic domain. This structural feature is also detected in oleosin of land plants and in lipid droplet surface protein (LDSP) of Nannochloropsis species. As a proline knot motif of oleosin, conservative proline residues existed in the hydrophobic domain. StLDP was up-regulated during nitrate deprivation, and fluctuations of StLDP expression levels corresponded to the size of the lipid droplets

    Development, validation, and comparison of gene analysis methods for detecting EGFR mutation from non-small cell lung cancer patients-derived circulating free DNA

    Get PDF
    The feasibility and required sensitivity of circulating free DNA (cfDNA)-based detection methods in second-line epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) treatment are not well elucidated. We examined T790M and other activating mutations of EGFR by cfDNA to assess the clinical usability. In 45 non-small cell lung cancer (NSCLC) patients harboring activating EGFR mutations, cfDNAs were prepared from the plasma samples. EGFR mutations in cfDNA were detected using highly sensitive methods and originally developed assays and these results were compared to tissue-based definitive diagnoses. The specificity of each cfDNA-based method ranged 96–100% whereas the sensitivity ranged 56–67%, indicating its low pseudo-positive rate. In EGFR-TKI failure cohort, 41–46% samples were positive for T790M by each cfDNA-based method, which was comparable to re-biopsy tissue-based T790M positive rates in literature. The concordance of the results for each EGFR mutation ranged from 83–95%. In eight patients, the results of the cfDNA-based assays and re-biopsy-derived tissue-based test were compared. The observed overall agreement ranged in 50–63% in T790M, and in 63–100% in activating EGFR mutations. In this study, we have newly developed three types of assay which have enough sensitivity to detect cfDNA. We also detected T790M in 44% of patients who failed prior EGFR-TKI treatment, indicating that cfDNA-based assay has clinical relevance for detecting acquired mutations of EGFR
    corecore