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Abstract 

Various kinds of organisms, including microalgae, accumulate neutral lipids in distinct intracellular 

compartments called lipid droplets. Generally, lipid droplets are generated from the endoplasmic 

reticulum and particular proteins localize on their surface. Some of these proteins function as structural 

proteins to prevent fusion between the lipid droplets, and the others could have an enzymatic role or 

might be involved in intracellular membrane trafficking. However, information about lipid droplet 

proteins in microalgae is scarce as compared with that in animals and land plants. We focused on the 

oil-producing, marine, pennate diatom Phaeodactylum tricornutum that forms lipid droplets during 

nitrogen deprivation and we investigated the proteins located on the lipid droplets. After 6 days of 

cultivation in a nitrate-deficient medium, the mature lipid droplets were isolated by sucrose density 

gradient centrifugation. Proteomic analyses revealed five proteins, with Stramenopile-type lipid droplet 

protein (StLDP) being the most abundant protein in the lipid droplet fraction. Though the primary 

sequence of StLDP did not have homology to any known lipid droplet proteins, StLDP had a central 

hydrophobic domain. This structural feature is also detected in oleosin of the land plant and lipid 

droplet surface protein (LDSP) of the Nannochloropsis. As a proline knot motif of oleosin, conservative 

proline residues existed in the hydrophobic domain. StLDP was upregulated during nitrate deprivation 

and fluctuations of StLDP expression levels corresponded with the size of the lipid droplets. 
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Introduction 

Microalgae have great potential as a sustainable feedstock for biofuel and oils because of their high 

biomass productivity per area or per time (Chisti 2007). Many microalgae have the ability to store 

triacylglycerol (TAG) in cell compartments called lipid droplets (Goold et al. 2015). The marine pennate 

diatom Phaeodactylum tricornutum also accumulates TAG in lipid droplets under nitrogen (N)-limited 

conditions (Yang et al. 2013). The biomass of this microalga is expected to be used as an oil resource, 

and mass cultivation trials have been performed for oil production (Acién Fernández et al. 2003, 

Fernández Sevilla et al. 2004). Moreover, molecular biological tools such as genetic modifications, 

real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) (Siaut et al. 2007), 

and complete genome information of P. tricornutum (Bowler et al. 2008) are currently available. Thus, P. 

tricornutum is a suitable model organism in molecular and applied phycology. 

Lipid droplets are intracellular compartments that pool lipophilic molecular species. Various kinds of 

organisms including animals, land plants, yeasts, algae, and bacteria can form lipid droplets in their 

cells (Murphy and Vance 1999, Murphy 2012). Common features of lipid droplets are as follows: they 

arise from the endoplasmic reticulum (ER) and are released into the cytosol, they are mainly filled with 

TAG, and they are surrounded by a phospholipid monolayer derived from the ER membrane and 

contain specific proteins on their surface (Ohsaki et al. 2014, Pol et al. 2014). These proteins play a 

role as structural proteins to stabilize the lipid droplet, as enzymes for lipid metabolism, and as 

intracellular membrane trafficking (Murphy and Vance 1999, Martin and Parton 2006, Murphy 2012). 

Proteomic analyses of the lipid droplets in various organisms have recently been reported (Yang et al. 

2012). Although lipid droplets are ubiquitous organelles, their surface proteins are quite diverse; for 

example, the PAT family proteins on mammalian cytosolic lipid droplets include perilipin, adipophilin, 

TIP47, S3-12, and OXPAT (Wolins et al. 2006, Brasaemle 2007). In spermatophyta (seed plants), the 

major proteins on lipid droplets are oleosin family proteins, and they include oleosin, caleosin, and 

steroleosin (Frandsen et al. 2001, Chapman et al. 2012). Although lipid droplets in mammalian 

adipocytes and plant seeds have similar roles, the sequences of these two protein families located on 

the lipid droplet are very low. On the other hand, information about algal lipid droplets and their surface 

proteins is scarce, and only a few cases have been reported for the model algae. For example, 

proteins that regulate lipid droplet size, i.e., major lipid droplet protein (MLDP), were identified in 
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Chlamydomonas reinhardtii (Moellering and Benning 2010, Nguyen et al. 2011) and Dunaliella salina 

(Davidi et al. 2012). Not only cytoplasmic but also plastidic β-carotene lipid body proteins were 

analyzed in Dunaliella bardawil (Davidi et al. 2014). In an astaxanthin-accumulating alga, 

Haematococcus pluvialis, the lipid droplet surface protein termed Haematococcus oil globule protein 

(HOGP) was revealed to be an ortholog of MLDP (Peled et al. 2011). In addition, putative caleosin was 

discovered to be the main protein in the lipid droplet fraction of Chlorella sp. (Lin et al. 2012), as well as 

caleosin-related Symbiodinium lipid droplet protein (SLDP) identified in the endosymbiotic 

dinoflagellates, Symbiodinium (Pasaribu et al. 2014). Moreover, alkenone body-associated proteins 

were analyzed in the haptophyte alga Tisochrysis lutea (Shi et al. 2015). 

Lipid droplet proteins in the Stramenopiles have only been analyzed in two species, Nannochloropsis 

oceanica (Vieler et al. 2012) and Fistulifera sp. JPCC DA0580, named F. solaris (Nojima et al. 2013). 

Surface proteins of lipid droplets were identified in N. oceanica and were found to have a central 

hydrophobic domain (Vieler et al. 2012). Nojima et al. (2013) identified five candidates for lipid droplet 

proteins in the diatom F. solaris.  

We focused on the oil-producing diatom P. tricornutum and investigated its lipid droplet proteins to 

understand the mechanism of lipid accumulation. In this study, we firstly isolated the lipid droplets by 

sucrose gradient centrifugation, and then we identified the proteins by performing SDS-PAGE followed 

by ESI-Q/TOF mass spectrometry of target peptide fragments. Obtained m/z data were processed 

using the P. tricornutum genome-based database search for identification. The sequence of the lipid 

droplet protein identified was then confirmed by GenBank database search and the presence of similar 

sequences of lipid droplet-associated proteins in a variety of organisms were suggested through a 

BLAST search. 

 

Results 

Isolation of lipid droplets and evaluation of contaminants 

The isolated lipid droplet fraction was analyzed by microscopy, spectrophotometry, thin layer 

chromatography (TLC), and immunological methods (Figure 1). Using light microscopy, we did not 

detect any contaminant debris in the isolated lipid droplet fraction (Figure 1A, B). Lipids in the isolated 

lipid droplet fraction were first extracted with acetone and then with ethyl acetate. Figure 1C shows the 

UV-visible absorption spectra of acetone extracts from the isolated lipid droplets, chloroplasts, and 
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whole cells. The absorption peaks of the lipid droplet fraction were observed at 448 nm and 474 nm, 

which correspond to carotenoids. Although an absorption peak corresponding to chlorophyll a was 

observed at 663 nm in the extracts from chloroplasts and whole cells, the peak of A663 was well 

suppressed in the extract from the isolated lipid droplets. These results indicate that chloroplast 

contamination in the isolated fraction was minimal.  

Lipids extracted from the isolated lipid droplets and the whole cells were analyzed by silica-gel TLC 

(Figure 1D). The TAG spot was observed in extracts from the isolated lipid droplets. 

We performed a Western blot analysis using rabbit antiserum against the large subunit of Rubisco 

(As-RbcL) in order to confirm the purity of the lipid droplets (Figure 1E, F). The As-RbcL reacted with 

the protein extracted from the whole cells but did not react with the protein extracted from the isolated 

lipid droplets (Figure 1E, F). 

 

SDS-PAGE and protein identification 

We fractionated proteins that were extracted from whole cells and from isolated lipid droplets with 

SDS-PAGE (R1–R3) (Figure 2). The molecular mass of the major protein in the lipid droplets of P. 

tricornutum was 49 kDa (gel fraction 4). 

Proteins identified in the isolated lipid droplet fraction are shown in Table 1. The protein Phatr48859 

was identified in all three replicates in gel fraction 4 and it corresponded with the 49-kDa major band. 

Thus, Phatr48859 may be one of the abundant proteins on lipid droplets in P. tricornutum. As shown in 

Supplemental figure 1, the orthologs of Phatr48859 were conserved mainly in Stramenopiles; hence 

we named this protein “Stramenopile-type lipid droplet protein (StLDP)”. The results of BLAST search 

indicated that StLDP did not share any known functional domain with those registered in the National 

Center for Biotechnology Information (NCBI) database and did not have sequence homology to any 

known lipid droplet proteins. 

Phatr48778, which includes an acyl-CoA binding site, was identified in all three replicates, suggesting 

that Phatr48778 plays an important role on the lipid droplets, whereby the acyl-CoA binding site relates 

to fatty acid metabolism. The other identified proteins, presented in Table 1, may be of minor 

importance because they were only detected in a single experiment. Phatr54019, which is similar to 

the heat shock protein 70 (Hsp70), may be a molecular chaperone for proteins located on the lipid 

droplets. Phatr45894 and Phatr49981 seemed to undergo redox reactions, but we will not speculate on 
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the substrates of these reactions in this work. 

 

Molecular characteristics of StLDP 

Figure 3 shows hydropathy plots of StLDP and representative proteins from lipid droplets; i.e., 

oleosin of Arabidopsis thaliana and LDSP of Nannochloropsis sp. Although StLDP and two other 

comparative proteins were composed of different numbers of amino acids, all these proteins had 

hydrophobic domains in the central region (222–275 aa of StLDP, 54–128 aa of oleosin, and 72–133 

aa of LDSP), despite low similarities in their amino acid sequences. 

As a result of a BLAST search on databases in NCBI and the Joint Genome Institute (JGI), we 

found homologs of StLDP conserved in four diatoms (Fragilariopsis cylindrus, Pseudo-nitzschia 

multiseries, Thalassiosira pseudonana, and T. oceanica) and two other heterokontophytes (a 

Eustigmatophyte; Nannochloropsis gaditana; and a brown alga, Ectocarpus siliculosus). Figure 4 

shows a multiple alignment of amino acid sequences of StLDP and its orthologs. The hydrophobic 

domains are shown in the red dotted square (222–275 aa in P. tricornutum StLDP). This domain 

consists of 54 amino acid residues, which are mainly hydrophobic, except for proline. Four distinctive 

proline residues (red arrows) were recognized and we suggest that they make a characteristic motif 

(PX9PX10PX3P) in the hydrophobic domain. In addition, there were two conserved domains at the 

N-terminal and C-terminal regions from the central hydrophobic domains (indicated by black and red 

two-headed arrows, respectively). 

 

Expression levels of StLDP and sizes of lipid droplets during N-deficient cultivation 

To examine whether StLDP expression is induced under N-deficient conditions, we determined the 

levels of StLDP transcripts by qRT-PCR along with the sizes of lipid droplets (Figure 5). We speculated 

that if the StLDP served as major protein, lipid droplet surface should be filled with it; therefore, the 

change of surface area of lipid droplet should be accompanied with the expression of the StLDP. The 

StLDP expression levels were upregulated during the N-deficient condition and the extent of its 

induction ranged from 2.8-folds (1 d after N-deprivation) to 7.1-folds (3 d after N-deprivation) than 

during N-sufficient conditions. The expression levels reached a peak at 3 d after N-deprivation and 

then decreased to a steady-state level that was approximately 3- to 4-folds higher than the control. 

Fluctuations in the expression levels corresponded with the size of the lipid droplets, as we expected. 
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Figure 5 presents the average sizes of the lipid droplets during N-deficiency. The average size of the 

lipid droplets increased up to 4 d after N-deprivation and reached plateau (Figure 5). 

 

Discussion 

Evaluation of contaminants and lipid contents of the lipid droplet fraction 

We disrupted the cells as gently as possible to prevent unnecessary breakage of the lipid droplets 

and other organelles. If the disruption forces are too intense, the risk of contamination by other 

organelles increases, particularly because debris and vesicles from various organelles are generated. 

Moreover, cells of common diatoms possess distinct, hard siliceous frustules; thus, it is difficult to 

break their cells with mild disruption. In previous studies of the diatom Fistulifera solaris., Nojima et al. 

(2013) adopted bead beating as a disruption method, and they reported that debris of chloroplasts 

could not be excluded. We disrupted the diatom cells using a French press and then the lipid droplets 

were isolated using sucrose density gradient centrifugation, based on the method of Ding et al. (2013). 

Vieler et al. (2012) also used a French press, although at 20 kpsi, to disrupt Nannochloropsis cells in 

order to isolate lipid droplets, whereas we employed 1 kpsi. After fractionation using sucrose density 

gradient centrifugation, we washed the lipid droplets with a weak detergent to remove small amount of 

debris and to purify the lipid droplets. 

Evaluation of purity is an important step in organelle isolation as it guarantees the quality of the 

fraction. We performed a Western blot analysis using As-RbcL because it is highly sensitive at 

detecting the target proteins. Nevertheless, contaminants from organelles other than chloroplast 

stroma may have been present in the isolated lipid droplet fractions. Better evaluation could be 

accomplished using antibodies against various other organelle markers. We did not detect any 

contamination by Rubisco, one of the most abundant proteins in cells. 

Acetone extracts of the isolated lipid droplets contained certain carotenoids (Figure 1C). According 

to previous reports, purified lipid droplets from other microalgae also contained some carotenoids 

(Moellering and Benning 2010, Peled et al. 2011, Davidi et al. 2012, Vieler et al. 2012). Whether 

carotenoids are contaminants or native compounds in isolated lipid droplets has not been concluded. 

In agreement with previous reports of other microalgal lipid droplets (Moellering and Benning 2010, 

Davidi et al. 2012, Vieler et al. 2012), isolated lipid droplets in P. tricornutum mainly contained TAG 

(Figure 1D).  
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Characterization of the identified lipid droplet proteins  

In this study, we identified five proteins from the isolated lipid droplets, and StLDP was the major 

protein. The orthologs of StLDP were conserved in the four other diatom genomes that have been 

determined and published: Phatr48778 with an acyl-CoA binding site, and three other proteins 

Phatr54019, Phatr45894, and Phatr49981. Previously five other proteins were identified as candidates 

for lipid droplet proteins from the diatom F. solaris. (Nojima et al. 2013). More recently, Maeda et al. 

(2014) identified the protein g4301 (similar to g12504) in F. solaris as a diatom-oleosome-associated 

protein 1 (DOAP1) and they discussed an ER-targeting signal in DOAP1. We searched for orthologous 

proteins among the proteins encoded by the genome of P. tricornutum. Except for protein g6705, 

orthologs of the other four proteins were also conserved in the genome of P. tricornutum (Table 2); 

however, none of them was found in our isolated lipid droplets. 

Shi et al. (2015) reported that coccolith scale associated protein as a result of alkenone body 

proteomics and the protein was also upregulated under nitrogen deprivation in P. tricornutum in the 

report of Valenzuela et al. (2012). However the reported protein Phatr55010, was not detected in our 

experiment. 

Chlamydomonas MLDP was more hydrophobic protein than Arabidopsis oleosin, mouse perilipin, and 

ADRP (Moellering and Benning 2010). Phaeodactylum StLDP showed higher hydrophobic score on 

GRAVY index at 0.26 than those of Chlamydomonas MLDP at 0.11. Ranking the GRAVY index score 

on some known lipid droplet proteins is as follows: Nannochloropsis LDSP (0.71, AFB75402), 

Phaeodactylum StLDP (0.26, XP_002183367), Chlamydomonas MLDP (0.11, XP_001697668), 

avocado LDAP-1 (-0.10, AGQ04593), Haematococcus HOGP (-0.13, ADN95182), Arabidopsis oleosin 

(-0.14, AAA87295), mouse ADRP (-0.28, AEB77763), mouse perilipin (-0.40, NP_783571), and 

Auxenochlorella caleosin (-0.59, AEB77763). Thus, especially the lipid droplet proteins in 

Stramenopiles, namely LDSP and StLDP seem to have higher hydrophobicity than those of the others. 

 

Hydrophobic region and functional domain of StLDP 

StLDP has a hydrophobic domain in the protein central region as well as in oleosin of the plant A. 

thaliana and in LDSP of Nannochloropsis. On the other hand, other microalgal lipid droplet proteins, 

such as MLDP in Chlamydomonas and Dunaliella and DOAP1 in the F. solaris, do not have a 
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hydrophobic domain. In addition, the typical motif (PX9PX10PX3P), which was conserved among 

Heterokontophyta, exists in this hydrophobic region (Figure 4). In the hydrophobic domain of oleosin, 

there is also a conserved proline knot motif (PX5SPX3P, where X consists of hydrophobic amino acids) 

(Tzen et al. 1992). The hydrophobic domain in oleosin makes a hairpin-like loop structure, and the 

proline knot motif (Abell et al. 2004) is located at the tip of the hairpin loop. The folded-hydrophobic 

domain can be anchored into the hydrophobic core of the lipid droplet and this structure enables 

oleosin to localize on the surface of the lipid droplets. We predicted the presence of a transmembrane 

region of StLDP using TMHMM Server v. 2.0 (Krogh et al. 2001). There were two predicted 

transmembrane helices in StLDP of P. tricornutum; both were 23 amino acid residues (223–245 aa and 

252–274 aa). Both of these predicted helices were located in the central hydrophobic region in StLDP 

and there is a probability that these two helices make a hairpin structure. However, positions for all of 

the conservative proline residues did not exist between the helices (i.e., at the tip of the hypothetical 

hairpin loop), unlike the proline knot in oleosin; therefore, the conservative proline residues may have 

other roles. 

When the gene for the oleosin1 protein was knocked out in Arabidopsis, the sizes of the lipid 

droplets increased, and the efficiency of lipid hydrolysis decreased because of a reduced surface area 

per volume, and germination was also delayed (Siloto et al. 2006). Furthermore, when LDSP was 

expressed in the oleosin1 knocked-out mutant, the sizes of the lipid droplets recovered but the TAG 

degradation rate did not recover completely compared with those in the wild type (Vieler et al. 2012). 

These results indicate that oleosin not only has a structural function but also plays an important role in 

lipid metabolism. Concerning the enzymatic activities of oleosin, Parthibane et al. (2012) demonstrated 

that oleosin3 (OLE3) in peanut has both monoacylglycerol acyltransferase and phospholipase 

activities. OLE3 has GXSXG lipase and HX4D motifs, and these motifs are important for the enzymatic 

activities in OLE3. Thus, that oleosin itself is related to the biosynthesis and degradation of plant lipids. 

In the case of StLDP, GXSXG or HX4D motifs did not exist in the entire amino acid sequence. The 

N-terminal region from the central hydrophobic domain of StLDP was more variable than the 

C-terminal region when we compared StLDP orthologs in Heterokontophyta (Figure 4). A short 

sequence in the N-terminal region, which ranged from 164 to 197 amino acid residues in StLDP of P. 

tricornutum, was conserved among the orthologs (black two-headed arrow). On the other hand, 

approximately 80 amino acid residues located at the C-terminal region, from the next hydrophobic 
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domain to amino acid 403 in the StLDP were conserved. Interestingly, we noticed that the sequence 

from 329 to 402 amino acid residues in the C-terminal region of StLDP (red two-headed arrow) was 

highly conserved among various microorganisms. The proteins that contained these 73 amino acids as 

a homologous domain were basically conserved in the Stramenopiles (Heterokonta), and they were 

also found in the Chlorophyta, Coccomyxa subellipsoidea C-169 (NCBI ID, XP_005651106), 

Micromonas sp. RCC-299 (XP_002500436), Micromonas pusilla CCMP1545 (XP_003062838), the 

Rhodophyta, Chondrus crispus (XP_005715278), the Cryptophyta, Guillardia theta CCMP2712 

(XP_005838121), the Haptophyta, Emiliania huxleyi (XP_005760304), and in bacterium such as 

Flavobacterium species. It seems that this domain has some kind of function. 

 

Relationship between the expression level of StLDP and the surface area of lipid droplets 

The qRT-PCR results indicate that the expression level of StLDP reached a peak at 3 d after 

N-deprivation, which is very similar to the pattern of growth of the lipid droplets (Figure 5). This was, 

however, a relatively late response compared with HOGP or MLDP, the green algal lipid droplet 

proteins. Expression of HOGP reached a maximum level at after 12 h of cultivation in an N-deficient 

medium (Peled et al. 2011). In the case of C. reinhardtii, a maximum expression of MLDP was 

observed after 24 h of N-deprivation (Moellering and Benning 2010). After 3 d in our experiment, 

StLDP expression decreased and maintained a steady-state level. Observations with a microscope 

reveal that the average sizes of the lipid droplets were maximal at 4 d after N-deprivation and 

maintained thus until 6 d (Figure 5). These results provide indirect evidence that StLDP is a main 

surface protein on the lipid droplets because the change in expression level corresponded to the 

change in size of the lipid droplets. A difference in the expression pattern between StLDP and green 

algal lipid droplet proteins may be driven by a different regulatory mechanism. 

 

Protein transition hypothesis during lipid accumulation 

The results presented in Figure 5 indicate that there were at least two stages of formation of the lipid 

droplets. The first was the early stage, which ranged from inoculation (0 d) to 3 d or 4 d on transcription 

level or actual lipid droplet growth level, respectively, when the lipid droplets accumulated oils inside. 

The second was at the late stage after these periods, when the lipid droplets retained their oils. We 

speculate that the composition or the state of the surface proteins on the lipid droplets changed 
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between these two stages because the proteins that are required for lipid droplets in each stage were 

different.  

A compositional change in surface proteins of lipid droplets was observed in a study of lipid droplets 

in mouse adipocytes (Wolins et al. 2003, 2005). According to these reports, TIP47 and S3-12 moved 

from the cytosol to the surface of nascent lipid droplets during initial fat accumulation. In contrast, 

perilipin and adipophilin constitutively exist on large or middle-sized lipid droplets and relate to 

sustaining fat storage and lipolysis.  

In this report, we isolated lipid droplets from cells that were cultured for 6 d in N-deficient medium, in 

other words, we prepared lipid droplet samples at their late stage of formation. Accordingly, we 

speculate that StLDP has a function for maintenance, distribution, and degradation of the lipids as well 

as perilipin. In addition, Phatr48778 with an acyl-CoA binding protein, and Phatr54019, which is similar 

to Hsp70, may play a role to assist the distribution or degradation of TAG in lipid droplets. 

 

Materials and methods 

Strain and culture condition 

Phaeodactylum tricornutum CCAP 1055/6 was used for all experiments. The cells were cultured in a 

modified Mann and Myers medium (Mann and Myers 1968) as the normal medium. The composition of 

the medium is described in Table S1. In the N-deficient culture, we used a N-free medium that did not 

contain sodium nitrate. The cells were washed with N-free medium three times before inoculation into 

N-free culture. Cultivation was conducted at 20°C under 200 μmol photons m−2 s−1 from a continuous 

white fluorescent lamp. The culture was aerated with filtered air containing 1% (v/v) CO2. For lipid 

droplet isolation, we used two 1 L Erlenmeyer flasks with 800 mL of medium for cultivation, and 1.6 L of 

culture broth was used for each experiment. The cells cultured in the normal medium were transferred 

into the N-free medium and were then cultured for 6 days to induce the formation of lipid droplets. 

 

Lipid droplet isolation 

The cells were harvested by centrifugation at 3000 × g for 5 min at room temperature and washed 

using Tris buffer (10 mM Tris-HCl, pH 7.6) with 2% (w/v) NaCl solution. The following procedures were 

performed on ice. The harvested cells were re-suspended with sucrose buffer (0.25 M sucrose and 

protease inhibitor cocktail (cOmplete, Roche Diagnostics) in the Tris buffer), then disrupted using a 
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French press at 1000 psi. After the disruption, the unbroken cells and other organelles were removed 

as a pellet by centrifugation at 50,000 × g for 5 min at 4°C. The surface layer of the supernatant 

containing the lipid droplets was collected into new tubes. Then, 1 mL of 2.5 M sucrose solution was 

added to 4 mL of the collected supernatant to adjust the sucrose concentration to 0.7 M. We gently 

poured the Tris buffer on the 0.7 M sucrose solution to make a discontinuous sucrose gradient layer. 

The tubes were centrifuged again at 50,000 × g for 20 min at 4°C. Lipid droplets on the surface of the 

solution were collected into ten 1.5 mL tubes and then centrifuged at 20,000 × g for 10 min at 4°C to 

remove any remnant buffer at the bottom. The remaining lipid droplets in the ten tubes were gathered 

into one tube and then re-centrifuged and as much buffer solution was discarded as possible. After the 

concentration of lipid droplets, 1 mL of weak detergent buffer (0.2% (v/v) Triton X-100 in the Tris buffer) 

was added to the tube of lipid droplets and incubated on ice for 10 min to remove the debris. Then, the 

tube was centrifuged at 20,000 × g for 10 min at 4°C and the weak detergent buffer was discarded. 

After the detergent treatment, the lipid droplets were washed twice with the Tris buffer. 

 

Sample preparation for lipid and protein analysis 

Cooled-acetone was added to the lipid droplet fraction and incubated at −20°C overnight. The sample 

tube was centrifuged at 20,000 × g for 10 min at 0°C. The lipid-containing acetone supernatant was 

collected for UV-visible spectrophotometry and lipid analysis. Furthermore, cooled-ethyl acetate was 

added to the sample to eliminate any residual oil component from the protein precipitate and incubated 

at −20 °C for 2 h. The tube was centrifuged and the ethyl acetate supernatant was removed. The 

precipitated protein fraction was dissolved in 6 μL of lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 

3% Triton X-100, and 2% SDS). For the protein preparation from whole cells, lysis buffer was directly 

added to the harvested cells, incubated on ice for 30 min and centrifuged. The supernatant was used 

as the protein extract from whole cells. 

 

UV-visible spectrophotometry and silica-gel thin layer chromatography 

The crude lipids from whole cells were also extracted by acetone with sonicator treatment. These 

acetone extracts of lipid droplets and whole cells were analyzed using an UV-visible 

spectrophotometer (UV-1800, UV spectrophotometer, Shimadzu). The absorbance of the 350–750 nm 

wavelength was measured to evaluate the contamination level, especially of chloroplasts. After the 
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spectrophotometric analysis, the acetone and ethyl acetate extracts described above were evaporated 

under a N2 stream and weighed gravimetrically. The lipid extracts were used for silica-gel TLC. 

The lipid extracts were re-dissolved in the measured amounts of solvent to adjust the concentration 

and following volumes of them were taken to TLC plate with micro syringe. For each lipid extract, 25 μg 

of crude lipid from whole cells, 10 μg of lipid droplet fraction, and 10 μg of TAG standard (triolein) were 

spotted onto a silica-gel TLC plate (HPTLC Silica gel 60 F254, Merch). Hexane:chloroform 1:1 (v/v) was 

used as a developing solvent. After development, 20% sulfuric acid was sprayed onto the plate and 

then the plate was heated to visualize the lipid spots. 

 

SDS-PAGE and Western blotting 

A 6-μL aliquot of the protein sample solution from the lipid droplets was mixed with 2 μL of 4× SDS 

sample buffer (0.25 M Tris-HCl (pH 6.8), 8% SDS, 20% sucrose, and 0.008% bromophenol blue), then 

0.8 μL of 500 mM dithiothreitol was added to the mixture and incubated at room temperature for 1 h to 

denature the proteins. Half of the prepared solution (4.4 μL) was used for proteomic analysis and the 

other half was used for Western blotting against As-RbcL. A protein sample from the whole cell was 

also prepared in the same manner. 

For the proteomic analysis, protein electrophoresis was performed in Novex 12% Tris-Glycine gel 

(Invitrogen). The gel was then fixed with a solution that consisted of 40% MeOH and 10% acetic acid 

for 15 min and stained using GelCode Blue Stain Reagent (Thermo Scientific) for 30 min. 

For the Western blotting, protein electrophoresis was performed in c-PAGEL C-12.5L minigel (Atto 

Corporation) as described previously (Tsuji et al. 2012).  Universal rbcL antibody (Agrisera) which 

diluted with blocking buffer at 1:20,000 was used as primary antibody. 

 

Peptide preparation for mass spectrometry 

The proteins separated by SDS-PAGE were sliced into approximately 1-mm3 pieces. The gel slices 

were destained and digested with sequence-grade modified trypsin (Promega, Madison, WI, USA) as 

described previously (Katayama et al. 2001) with minor modifications. After digestion, the peptides 

were extracted from the gel pieces with acetonitrile:5 % (v/v) formic acid aqueous solution 1:1 (v/v). 

The extracted solution was recovered into a vial. 
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MS analysis and database search 

The digested peptides were separated by HPLC with a capillary pump (Agilent 1200 series) equipped 

with ZORBAX 300SB-C18 (0.3 mm × 150 mm, Agilent) column. For the elution, mobile phase A 

consisted of H2O:acetonitrile 95:5 (v/v) containing 0.1% formic acid, and mobile phase B consisted of 

H2O:acetonitrile 10:90 (v/v) containing 0.1 % formic acid. The peptide samples were eluted at 5 µL 

min−1 under the following gradient: ratio of mobile phase B started at 5% and increased to 50% for 60 

min, then B ratio elevated quickly to 95% for 1 min and was maintained at 95% for 14 min. The eluted 

peptides were applied to an electrospray ionization quadrupole time-of-flight (ESI-Q/TOF) system 

(Agilent 6520 Accurate-Mass QTOF LC/MS). The MS scan range was set to m/z 105–3000 and 

multi-charged ions (+2, +3, and >+3) were preferentially subjected to MS/MS analysis. The obtained 

data were exported as Mascot generic files and then each corresponding protein was searched for in 

the genome database of P. tricornutum obtained from JGI 

(http://genome.jgipsf.org/Phatr2/Phatr2.home.html; Phaeodactylum tricornutum v2.0) using Mascot 

Server (version 2.2.06, Matrix Science). A BLASTp search for the identified proteins was performed at 

NCBI (http://www.ncbi.nlm.nih.gov/) and JGI (http://genome.jgi.doe.g.,ov/) websites. Prediction of the 

transmembrane helix was performed at TMHMM Server 2.0 (http://www.cbs.dtu.dk/services/TMHMM/, 

Krogh et al. 2001). 

 

Real-time qRT-PCR 

After harvesting the cells, respective samples were immediately frozen with liquid N2 and kept at −80°C 

until RNA extraction. A bead beater was used for cell disruption. TRIzol reagent and PureLink RNA 

Mini Kit (Invitrogen) were used for the RNA extraction. The qualities of total RNA extracts were 

checked by MOPS-agarose gel electrophoresis. 

We performed qRT-PCR and then conducted the analysis using the comparative Ct method (Livak 

and Schmittgen 2001). The actin12 gene was used as the housekeeping gene. We used the primer set 

that was previously designed for actin12 (Siaut et al. 2007). For the detection of mRNA of DLDP, we 

used the following primers: (F-) 5'-GCCTGGTTTCGTTTCGTTG-3' and (R-) 

5'-AAGACGGCGACAATCGGTA-3'. SuperscriptIII Platinum SYBR Green qRT-PCR Kit (Invitrogen) 

was used for the preparation of the reaction mixture. StepOnePlus (Applied Biosynthesis) was used for 

executing qRT-PCR.  
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Legends to figures 

 

Figure 1. Quality evaluation of the isolated lipid droplet fraction. (A, B) Microscopic image of a Nile-red 

stained lipid droplet. Scale bars indicate 20 µm. (A) Differential interference contrast image. (B) 

Fluorescence image. (C) Absorption spectra of acetone extracts obtained from nitrate (N) deprived 

whole cells (black line), chloroplast (green line), and lipid droplet (yellow line). (D) Silica-gel thin layer 

chromatography of lipid extracts obtained from whole cells (+N, nitrate sufficient; −N, nitrate deficient); 

lipid droplets from –N cells (LD); and triglycerol standard, triolein (std). P/S indicates peak of developing 

solvent. (E) Western blotting results against rbcL antibody. Lane 1–5: proteins from the whole cell. Lane 

6–8: proteins from the lipid droplet fraction (replicate 1–3, respectively). Lane 9–11: proteins from the 

whole cell extract washed with acetone in the same manner as the lipid droplet fraction. M indicates the 

marker lane. (F) Magnified image of the white dotted area in E. R1–3 indicates samples from the three 

biological replicates. 

 

Figure 2. SDS-PAGE gel image of proteins from the whole cell extract and the lipid droplet fraction. All 

lanes of the lipid droplet fraction (R1–3) were sliced into numbered gel pieces for proteomic analysis, 

as indicated at the right side.  

 



 

 

Figure 3. Hydropathy plots of StLDP, oleosin, and LDSP. For this analysis we used an amino acid 

sequence of StLDP (Phaeodactylum tricornutum, NCBI accession no. XP_002183367), Oleosin 

(Arabidopsis thaliana, GenBank: AAA87295), and LDSP (Nannochloropsis sp. CCMP1779, GenBank: 

AFB75402). 

 

Figure 4. Multiple sequence alignment of StLDP and homologs. The red dotted square indicates the 

hydrophobic domain conserved in the StLDP homologs. Small red arrows indicate the conservative 

proline residue in the hydrophobic region. The black two-headed arrow indicates a short conserved 

domain in the N-terminal side and the red two-headed arrow indicates a widely conserved domain in 

the C-terminal side. Fracyl167885 (Fragilariopsis cylindrus, JGI protein ID: 167885), Psemu21664 

(Pseudo-nitzschia multiseries, JGI protein ID: 21664), Phatr48859 (Phaeodactylum tricornutum, JGI 

protein ID: 48859), Thaps23929 (Thalassiosira pseudonana, JGI protein ID: 23929), Thaoc30415 (T. 

oceanica, JGI protein ID: 30415), Naga100005g121 (Nannochloropsis gaditana, GenBank: 

EWM25464), and EctsiCBN75389 (Ectocarpus siliculosus, GenBank: CBN75389). 

 

Figure 5. Changes in StLDP mRNA expression level and lipid droplet diameter during nitrate 

deprivation. Expression level was normalized using the housekeeping gene actin12 and the 

comparative Ct method; the error bars indicate S.D. (n = 3). Lipid droplet diameters were determined 

using the Nile-red stained cell image and the scale bars indicate S.E. values (n > 80). 
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Fig.2
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Tables 

Table 1. List of the proteins identified from the lipid droplet fraction. 

Gel 

fraction 

Mascot score 

Sequence 

coverage 

[%] 
Protein ID Protein name 

Functional 

domain (amino 

acid region) 

Amino 

acid 

number 

mol 

wt 

[kDa] 

NCBI 

reference no 

Similar protein 

in 

Thalassiosira 

pseudonana R1 R2 R3 R1 R2 R3 

4 1113 378 190 43 41 34 Phatr48859 

Stramenopile-type 

Lipid Droplet 

Protein, StLDP 

none 456 48.774 XP_002183367 

hypothetical 

protein 

[XP_002292405] 

5 50 45 41 13 5 9 Phatr48778 

acyl-CoA binding 

protein 

Acyl-CoA binding 

region (14-96) 

351 38.195 XP_002183443 

acyl-CoA 

binding protein, 

partial 
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[XP_002289611] 

2 60 - - 33 - - Phatr54019 

heat shock 

protein, Hsp70 

HspA1-2,6-8 like 

nucleotide-binding 

domain (7-382) 

653 70.831 XP_002177351 

heat shock 

protein 70 

[XP_002291508] 

4 40 - - 20 - - Phatr45894 

hypothetical 

protein 

Thioredoxin-like 

(171-260) 

354 37.97 XP_002180271 

hypothetical 

protein 

[XP_002286222] 

1 - - 37 - - 5 Phatr49981 

hypothetical 

protein 

2OG-Fe(II) 

oxygenase 

superfamily 

(102-323), 

SAD/SRA domain 

544 60.786 XP_002184813 

hypothetical 

protein 

[XP_002294418] 
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Table 2. List of the proteins identified in a previous report (Nojima et al. 2013) and its homologs in P. 

tricornutum. 

ProteinID Putative function mol wt [kDa] 

Homolog in 

Phaeodactylum 

g4796 transmembrane protein 85 Phatr44488/50592 

g6705 ABC transporter, partial 149 - 

g6574 potassium channel 58 Phatr13578 

g4301 unknown, DOAP1 53 Phatr48876 

g5708 unknown 49 Phatr45146 



Supplementary Figure S1. Multiple sequence alignment of StLDP orthologs. The red dotted square indicates the 
hydrophobic domain in the StLDP homologs. Small red arrows indicate conservative proline residues in the hydro-
phobic region. The black two-headed arrow indicates a short conserved domain in the N-terminal side and the red 
two-headed arrow indicates a widely conserved domain in the C-terminal side. 

Amino acid sequences used in this analysis are as follows; Phatr48859 (Phaeodactylum tricornutum,JGI ID: 48859), 
Fracyl167885 (Fragilariopsis cylindrus, JGI ID: 167885), Psemu21664 (Pseudo-nitzschia multiseries, JGI ID: 
21664), Thaps23929 (Thalassiosira pseudonana, JGI ID: 23929), Thaoc30415 (Thalassiosira oceanica, JGI ID: 
30415), Naga100005g121 (Nannochloropsis gaditana, GenBank: EWM25464), EctsiCBN75389 (Ectocarpus silicu-
losus, GenBank: CBN75389), Aplke97617 (Aplanochytrium kerguelense, JGI ID: 97617), Aurli151081 (Aurantiochy-
trium limacinum, JGI ID: 151081), Schag94104 (Schizochytrium aggregatum, JGI ID: 94104), Phyci422862 (Phy-
tophthora cinnamomi, JGI ID: 422862), Physo532873 (Phytophthora sojae, JGI ID: 532873), Guith161621 (Guillar-
dia theta, JGI ID: 161621), and Emihu310878 (Emiliania huxleyi, JGI ID: 310878).



Supplementary Table S1. Composition of the modified Mann and Myers medium. 

Compound 

NaNO3 50 mg 

K2HPO4 5 mg 

Na2SiO3 9H2O 30 mg 

Vitamin B12 0.05 µg 

Biotin 0.05 µg 

Thiamine HCl 10 µg 

NaCl 1.5 g 

MgSO4 7H2O 360 mg 

KCl 180 mg 

CaCl2 2H2O 120 mg 

Na2EDTA 2H2O 30 mg 

H3BO3 6 mg 

FeSO4 7H2O 2 mg 

MnCl2 4H2O 1.4 mg 

ZnSO4 7H2O 33 µg 

Co(NO3)2 6H2O 7 µg 

CuSO4 6H2O 2 µg 

Tris (hydroxymethyl) aminomethane 100 mg 

 pH was adjusted with HCl at 8.0 

Distilled water  100 mL 




