82 research outputs found

    Phase Separation of a Fast Rotating Boson-Fermion Mixture in the Lowest-Landau-Level Regime

    Full text link
    By minimizing the coupled mean-field energy functionals, we investigate the ground-state properties of a rotating atomic boson-fermion mixture in a two-dimensional parabolic trap. At high angular frequencies in the mean-field-lowest-Landau-level regime, quantized vortices enter the bosonic condensate, and a finite number of degenerate fermions form the maximum-density-droplet state. As the boson-fermion coupling constant increases, the maximum density droplet develops into a lower-density state associated with the phase separation, revealing characteristics of a Landau-level structure

    Vortex phase diagram in rotating two-component Bose-Einstein condensates

    Full text link
    We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates with equal intracomponent but varying intercomponent coupling constants. A phase diagram in the intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex lattices undergo phase transitions from triangular to square, to double-core lattices, and eventually develop interwoven "serpentine" vortex sheets with each component made up of chains of singly quantized vortices.Comment: 4 pages, 4 figures, revtex

    Thermal dissipation in quantum turbulence

    Full text link
    The microscopic mechanism of thermal dissipation in quantum turbulence has been numerically studied by solving the coupled system involving the Gross-Pitaevskii equation and the Bogoliubov-de Gennes equation. At low temperatures, the obtained dissipation does not work at scales greater than the vortex core size. However, as the temperature increases, dissipation works at large scales and it affects the vortex dynamics. We successfully obtained the mutual friction coefficients of the vortex dynamics as functions of temperature, which can be applied to the vortex dynamics in dilute Bose-Einstein condensates.Comment: 4 pages, 6 figures, submitted to AP

    Quantum Field Theoretical Description of Unstable Behavior of Trapped Bose-Einstein Condensates with Complex Eigenvalues of Bogoliubov-de Gennes Equations

    Full text link
    The Bogoliubov-de Gennes equations are used for a number of theoretical works on the trapped Bose-Einstein condensates. These equations are known to give the energies of the quasi-particles when all the eigenvalues are real. We consider the case in which these equations have complex eigenvalues. We give the complete set including those modes whose eigenvalues are complex. The quantum fields which represent neutral atoms are expanded in terms of the complete set. It is shown that the state space is an indefinite metric one and that the free Hamiltonian is not diagonalizable in the conventional bosonic representation. We introduce a criterion to select quantum states describing the metastablity of the condensate, called the physical state conditions. In order to study the instability, we formulate the linear response of the density against the time-dependent external perturbation within the regime of Kubo's linear response theory. Some states, satisfying all the physical state conditions, give the blow-up and damping behavior of the density distributions corresponding to the complex eigenmodes. It is qualitatively consistent with the result of the recent analyses using the time-dependent Gross-Pitaevskii equation.Comment: 29 page

    Vortex lattice formation in a rotating Bose-Einstein condensate

    Full text link
    We study the dynamics of vortex lattice formation of a rotating trapped Bose-Einstein condensate by numerically solving the two-dimensional Gross-Pitaevskii equation, and find that the condensate undergoes elliptic deformation, followed by unstable surface-mode excitations before forming a quantized vortex lattice. The origin of the peculiar surface-mode excitations is identified to be phase fluctuations at the low-density surface regime. The obtained dependence of a distortion parameter on time and that on the driving frequency agree with the recent experiments by Madison {\it et al.} [Phys. Rev. Lett. {\bf 86}, 4443 (2001)].Comment: 4 pages, 4 figure

    Nonlinear dynamics for vortex lattice formation in a rotating Bose-Einstein condensate

    Full text link
    We study the response of a trapped Bose-Einstein condensate to a sudden turn-on of a rotating drive by solving the two-dimensional Gross-Pitaevskii equation. A weakly anisotropic rotating potential excites a quadrupole shape oscillation and its time evolution is analyzed by the quasiparticle projection method. A simple recurrence oscillation of surface mode populations is broken in the quadrupole resonance region that depends on the trap anisotropy, causing stochastization of the dynamics. In the presence of the phenomenological dissipation, an initially irrotational condensate is found to undergo damped elliptic deformation followed by unstable surface ripple excitations, some of which develop into quantized vortices that eventually form a lattice. Recent experimental results on the vortex nucleation should be explained not only by the dynamical instability but also by the Landau instability; the latter is necessary for the vortices to penetrate into the condensate.Comment: RevTex4, This preprint includes no figures. You can download the complete article and figures at http://matter.sci.osaka-cu.ac.jp/bsr/cond-mat.htm

    Quantum hydrodynamics

    Full text link
    Quantum hydrodynamics in superfluid helium and atomic Bose-Einstein condensates (BECs) has been recently one of the most important topics in low temperature physics. In these systems, a macroscopic wave function appears because of Bose-Einstein condensation, which creates quantized vortices. Turbulence consisting of quantized vortices is called quantum turbulence (QT). The study of quantized vortices and QT has increased in intensity for two reasons. The first is that recent studies of QT are considerably advanced over older studies, which were chiefly limited to thermal counterflow in 4He, which has no analogue with classical traditional turbulence, whereas new studies on QT are focused on a comparison between QT and classical turbulence. The second reason is the realization of atomic BECs in 1995, for which modern optical techniques enable the direct control and visualization of the condensate and can even change the interaction; such direct control is impossible in other quantum condensates like superfluid helium and superconductors. Our group has made many important theoretical and numerical contributions to the field of quantum hydrodynamics of both superfluid helium and atomic BECs. In this article, we review some of the important topics in detail. The topics of quantum hydrodynamics are diverse, so we have not attempted to cover all these topics in this article. We also ensure that the scope of this article does not overlap with our recent review article (arXiv:1004.5458), "Quantized vortices in superfluid helium and atomic Bose--Einstein condensates", and other review articles.Comment: 102 pages, 29 figures, 1 tabl

    Development of a receiver system specified for PMC observation for Syowa Rayleigh lidar system

    Get PDF
    第3回極域科学シンポジウム/第36回極域宙空圏シンポジウム 11月26日(月)、27日(火) 国立極地研究所 2階ラウン

    昭和基地高機能ライダーの機能拡張のための波長可変共鳴散乱ライダー開発の現状

    Get PDF
    第6回極域科学シンポジウム分野横断型セッション:[IM] 横断 中層大気・熱圏11月17日(火) 国立極地研究所1階交流アトリウ
    corecore