22 research outputs found

    X-ray absorption spectroscopy systematics at the tungsten L-edge

    Get PDF
    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, has been interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W<sup>0</sup>(PMe<sub>3</sub>)<sub>6</sub>], [W<sup>II</sup>Cl<sub>2</sub>(PMePh<sub>2</sub>)<sub>4</sub>], [W<sup>III</sup>Cl<sub>2</sub>(dppe)<sub>2</sub>][PF<sub>6</sub>] (dppe = 1,2-bis(diphenylphosphino)ethane), [W<sup>IV</sup>Cl<sub>4</sub>(PMePh<sub>2</sub>)<sub>2</sub>], [W<sup>V</sup>(NPh)Cl<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>], and [W<sup>VI</sup>Cl<sub>6</sub>] correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio (EBR) of the L<sub>3,2</sub>-edges and the L<sub>1</sub> rising-edge energy with metal Z<sub>eff</sub>, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>] and [W<sup>IV</sup>(mdt)<sub>2</sub>(CN)<sub>2</sub>]<sup>2–</sup> (mdt<sup>2–</sup> = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W<sup>IV</sup> species. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: 1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Z<sub>eff</sub> in the species of interest; 2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS; 3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate the difference between formal oxidation state and metal Z<sub>eff</sub> or, as in the case of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>], add other subtlety by modulating the redox level of other ligands in the coordination sphere

    Increased conversion and selectivity of 4-nitrostyrene hydrogenation to 4-aminostyrene on Pt nanoparticles supported on titanium-tungsten mixed oxides

    No full text
    A catalyst series consisting in platinum nanoparticles photodeposited on pure titania and on W/Ti mixed oxides, these latter prepared by the sol-gel method, were tested in the hydrogenation of 4-nitrostyrene. A remarkable increase in the reaction rate occurred when the catalyst support contained tungsten, with a parallel boosting in the selective reduction of the nitro group. With the selective W-containing catalysts, the reaction proceeded at constant rate (zero order rate law), while the tungsten-free catalyst showed a rate-dependence on the 4-nitrostyrene concentration (positive order reaction). The presence of tungsten in the support is beneficial not only because a higher surface area is obtained, thanks to the anatase stabilization of tungsten in titania, but also because it allows the photodeposition of smaller, better dispersed platinum particles, on which the adsorption of the aromatic part of 4-nitrostyrene is less favored. Tungsten not only substitutes titanium in the titania lattice, as revealed by HAAF-STEM analysis, but it is also present as WOx species partly covering the Pt nanoparticles photodeposited on the mixed oxide support, as revealed by an in depth distribution XPS analysis. This accounts for the progressively lower performance observed with increasing tungsten content in the catalysts, the highest conversion and selective hydrogenation of the 4-nitrostyrene nitro group having been achieved on the catalyst with a 1% W/Ti molar rati

    Oxidation State of Ce in CeO<sub>2</sub>‑Promoted Rh/Al<sub>2</sub>O<sub>3</sub> Catalysts during Methane Steam Reforming: H<sub>2</sub>O Activation and Alumina Stabilization

    No full text
    The cerium oxidation state in ceria-doped Rh/Al<sub>2</sub>O<sub>3</sub> catalysts during the methane steam reforming (MSR) reaction was determined by <i>in situ</i> X-ray absorption spectroscopy and online mass spectrometry at 773 K. The catalysts were characterized by electron microscopy and X-ray diffraction. The oxidation states of rhodium and cerium during MSR are related. A total of 25% of Ce<sup>4+</sup> reduces to Ce<sup>3+</sup> under a CH<sub>4</sub>/H<sub>2</sub>O/He flow when the catalyst is active in MSR (773 K). A slight reoxidation occurs when the catalyst is sequentially exposed to steam diluted in helium at high temperatures, showing that only a small fraction of CeO<sub>2–<i>x</i></sub> may be involved in the water activation step by reoxidation. The main role of ceria during reaction, besides the activation of water, is to stabilize the structure of alumina by forming CeAlO<sub>3</sub> and to maintain the dispersion of rhodium
    corecore