11 research outputs found

    Regulation of human CYP2C9 expression by electrophilic stress involves AP-1 activation and DNA looping

    Get PDF
    CYP2C9 and CYP2C19 are important human enzymes that metabolize therapeutic drugs, environmental chemicals and physiologically important endogenous compounds. Initial studies using primary human hepatocytes showed induction of both the CYP2C9 and CYP2C19 genes by tert-butylhydroquinone (tBHQ). As a pro-oxidant, tBHQ regulates the expression of cytoprotective genes by activation of redox-sensing transcription factors, such as the nuclear factor E2-related factor 2 (Nrf2) and members of the activator protein 1 (AP-1) family of proteins. The promoter region of CYP2C9 contains two putative AP-1 sites (TGAGTCA) at positions -2201 and -1930 which are also highly conserved in CYP2C19. The CYP2C9 promoter is activated by ectopic expression of cFos and JunD while Nrf2 had no effect. Using specific kinase inhibitors for MAPK, we showed that ERK and JNK are essential for tBHQ-induced expression of CYP2C9. EMSA assays demonstrate that cFos distinctly interacts with the distal AP-1 site and JunD with the proximal site. Because cFos regulates target genes as heterodimers with Jun proteins, we hypothesized that DNA looping might be required to bring the distal and proximal AP-1 sites together to activate the CYP2C9 promoter. Chromosome conformation capture (3C) analyses confirmed the formation of a DNA loop in the CYP2C9 promoter possibly allowing interaction between cFos at the distal site and JunD at the proximal site to activate CYP2C9 transcription in response to electrophiles. These results indicate that oxidative stress generated by exposure to electrophilic xenobiotics and metabolites induces the expression of CYP2C9 and CYP2C19 in human hepatocytes

    Integration of prevention and control measures for female genital schistosomiasis, HIV and cervical cancer

    Get PDF
    Female genital schistosomiasis as a result of chronic infection with Schistosoma haematobium (commonly known as bilharzia) continues to be largely ignored by national and global health policy-makers. International attention for large-scale action against the disease focuses on whether it is a risk factor for the transmission of human immunodeficiency virus (HIV). Yet female genital schistosomiasis itself is linked to pain, bleeding and sub- or infertility, leading to social stigma, and is a common issue for women in schistosomiasis-endemic areas in sub-Saharan Africa. The disease should therefore be recognized as another component of a comprehensive health and human rights agenda for women and girls in Africa, alongside HIV and cervical cancer. Each of these three diseases has a targeted and proven preventive intervention: antiretroviral therapy and pre-exposure prophylaxis for HIV; human papilloma virus vaccine for cervical cancer; and praziquantel treatment for female genital schistosomiasis. We discuss how female genital schistosomiasis control can be integrated with HIV and cervical cancer care. Such a programme will be part of a broader framework of sexual and reproductive health and rights, women’s empowerment and social justice in Africa. Integrated approaches that join up multiple public health programmes have the potential to expand or create opportunities to reach more girls and women throughout their life course. We outline a pragmatic operational research agenda that has the potential to optimize joint implementation of a package of measures responding to the specific needs of girls and wome

    An unexpected role for a Wnt-inhibitor: Dickkopf-1 triggers a novel cancer survival mechanism through modulation of aldehyde-dehydrogenase-1 activity

    No full text
    It is widely accepted that canonical Wnt (cWnt) signaling is required for the differentiation of osteoprogenitors into osteoblasts. Furthermore, tumor-derived secretion of the cWnt-antagonist Dickkopf-1 (Dkk-1) is known to cause bone destruction, inhibition of repair and metastasis in many bone malignancies, but its role in osteosarcoma (OS) is still under debate. In this study, we examined the role of Dkk-1in OS by engineering its overexpression in the osteochondral sarcoma line MOS-J. Consistent with the known role of Dkk-1 in osteoblast differentiation, Dkk-1 inhibited osteogenesis by the MOSJ cells themselves and also in surrounding tissue when implanted in vivo. Surprisingly, Dkk-1 also had unexpected effects on MOSJ cells in that it increased proliferation and resistance to metabolic stress in vitro and caused the formation of larger and more destructive tumors than controls upon orthotopic implantation. These effects were attributed in part to upregulation of the stress response enzyme and cancer stem cell marker aldehyde-dehydrogenase-1 (ALDH1). Direct inhibition of ALDH1 reduced viability under stressful culture conditions, whereas pharmacological inhibition of cWnt or overexpression of ALDH1 had a protective effect. Furthermore, we observed that ALDH1 was transcriptionally activated in a c-Jun-dependent manner through a pathway consisting of RhoA, MAP-kinase-kinase-4 and Jun N-terminal Kinase (JNK), indicating that noncanonical planar cell polarity-like Wnt signaling was the mechanism responsible. Together, our results therefore demonstrate that Dkk-1 enhances resistance of OS cells to stress by tipping the balance of Wnt signaling in favor of the non-canonical Jun-mediated Wnt pathways. In turn, this results in transcriptional activation of ALDH1 through Jun-responsive promoter elements. This is the first report linking Dkk-1 to tumor stress resistance, further supporting the targeting of Dkk-1 not only to prevent and treat osteolytic bone lesions but also to reduce numbers of stress-resistant tumor cells

    Presentation, care and outcomes of patients with NSTEMI according to World Bank country income classification: the ACVC-EAPCI EORP NSTEMI Registry of the European Society of Cardiology.

    No full text

    Cohort profile: the ESC EURObservational Research Programme Non-ST-segment elevation myocardial infraction (NSTEMI) Registry.

    No full text

    Cohort profile: the ESC EURObservational Research Programme Non-ST-segment elevation myocardial infraction (NSTEMI) Registry

    No full text
    Aims The European Society of Cardiology (ESC) EURObservational Research Programme (EORP) Non-ST-segment elevation myocardial infarction (NSTEMI) Registry aims to identify international patterns in NSTEMI management in clinical practice and outcomes against the 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without ST-segment-elevation. Methods and results Consecutively hospitalised adult NSTEMI patients (n = 3620) were enrolled between 11 March 2019 and 6 March 2021, and individual patient data prospectively collected at 287 centres in 59 participating countries during a two-week enrolment period per centre. The registry collected data relating to baseline characteristics, major outcomes (inhospital death, acute heart failure, cardiogenic shock, bleeding, stroke/transient ischaemic attack, and 30-day mortality) and guideline-recommended NSTEMI care interventions: electrocardiogram pre- or in-hospital, prehospitalization receipt of aspirin, echocardiography, coronary angiography, referral to cardiac rehabilitation, smoking cessation advice, dietary advice, and prescription on discharge of aspirin, P2Y12 inhibition, angiotensin converting enzyme inhibitor (ACEi)/angiotensin receptor blocker (ARB), beta-blocker, and statin. Conclusion The EORP NSTEMI Registry is an international, prospective registry of care and outcomes of patients treated for NSTEMI, which will provide unique insights into the contemporary management of hospitalised NSTEMI patients, compliance with ESC 2015 NSTEMI Guidelines, and identify potential barriers to optimal management of this common clinical presentation associated with significant morbidity and mortality

    Planning the Human Variome Project: The Spain report.

    No full text
    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols Spain, in May 2008. Hum Mutat 30, 496-510, 2009. (C) 2009 Wiley-Liss, Incclose31333
    corecore