22 research outputs found

    Legacy effects override soil properties for CO 2 and N 2 O but not CH 4 emissions following digestate application to soil

    Get PDF
    The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil

    Palynomorphs of the Normapolles group and related plant mesofossils from the Iharkút vertebrate site, Bakony Mountains (Hungary)

    Get PDF
    Abstract Palynological and paleobotanical investigation of bonebeds and other strata of the Csehbánya Formation from the vertebrate locality at Iharkút (Bakony Mts, Hungary) reveals well-preserved Santonian palynological assemblages dominated by the Normapolles group, with a minor component consisting of other angiosperm pollen, some gymnosperm pollen, and spores. Eleven species of Normapolles-type pollen grains belonging to seven genera and fruit remains of a new taxon, Sphaeracostata barbackae gen. et sp. nov., are described. The new species is very abundant in the material, represented by ca. 1000 specimens. The genus Caryanthus Friis and an unnamed form previously reported from Haţeg by Lindfors et al. (2010) are also present. Plants producing Normapolles-type pollen grains diversified during the Late Cretaceous, with a bloom in the Santonian. The palynostratigraphy of the Upper Cretaceous terrestrial sediments in the studied region is based on Normapolles-related species. The studied assemblage is assigned to the Oculopollis zaklinskaiae-Tetracolporopollenites (Brecolpites) globosus Zone (or Zone C) indicating a late Santonian age. Comparison of the Iharkút palynoflora with other known Upper Cretaceous palynofloras of Central Europe shows diachronous occurrence of Normapolles taxa at different geographic localities and warrants further investigation. The ecological requirements of the amphibian fauna reflect azonal conditions controlled by the availability of water, which is in agreement with the inferred ecological conditions based on the paleobotanical investigations. The fauna is of entirely non-marine character, further supported by isotope studies, in line with our data showing that the palynological samples contain no marine forms

    A brackish to non-marine aquatic and terrestrial fossil assemblage with vertebrates from the lower Coniacian (Upper Cretaceous) Gosau Group of the Tiefengraben locality near St. Wolfgang, Austria

    Get PDF
    The Turonian–Coniacian continental fossil record in Europe is scarce. Here we present a new fossil assemblage of early Coniacian age that was systematically collected from the coal-bearing Gosau Group of the Tiefengraben locality near St. Wolfgang, Austria. The diverse assemblage is composed of at least 60 taxa including sporomorphs and Normapolles-related pollen, seeds and leaves of angiosperms and gymnosperms, charophytes, gastropods, bivalves, ostracods, termites, fishes, crocodiles and dinosaurs. Concerning charophytes, ostracods, gastropods, crocodiles and dinosaurs, the discovered specimens either extend the temporal and spatial range of specific groups (in some cases as possible relict forms) or suggest the occurrence of new taxa. The discovered remains of algae, molluscs, ostracods, calcareous nannofossils and lepisosteid fish represent a mixed faunal assemblage from different palaeohabitats, from marginal marine to low salinity and freshwater or terrestrial environments. As Normapolles-related angiosperm plants dominate the flora with a relatively high number dentate leaves, a slightly cooler microenvironment compared to other Turonian–Coniacian Central European localities is indicated. The characteristically grooved crocodylian teeth of Tiefengraben differ from the previously known Late Upper Cretaceous European crocodyliform teeth and suggest a more diverse crocodyliform fauna in the region. Dinosaurs are represented by teeth of at least three different theropods, the largest of which is referred here to as basal tetanurans. The fossil assemblage of this early Gosau Group occurrence is of great importance for our understanding of the continental floristic and faunistic composition of the western Tethyan archipelago during the Cenomanian–Campanian gap

    Late Maastrichtian small-sized herpetofauna from Valencia province, eastern Spain

    No full text
    This is an Accepted Manuscript of an article published by Taylor & Francis in Historical Biology on 2017, available online: http://www.tandfonline.com/10.1080/08912963.2015.1122004[EN] A Late Maastrichtian microvertebrate assemblage which includes amphibian remains was recovered from continental deposits of the palaeontological site of La Solana, Valencia Province, Spain. This site is composed of variegated mudstones, pedogenically modified, interbedded with fluvial sand bodies and freshwater limestones lenses, and has also yielded plant debris, freshwater and oligohaline invertebrates, abundant fish remains (isolated bones and scales), turtle plates and archosaur bones. This fossil assemblage, dominated by aquatic forms, also includes semiaquatic and terrestrial elements, and may be interpreted as the palaeofauna of a wetland environment with terrestrial environs. The new material described here consists of fragmentary remains of an indeterminate albanerpetontid, a salamandrid and two anuran taxa (an alytid and a palaeobatrachid). The amphibians from La Solana are typical Laurasiatic taxa. This faunal association shows broad similarities to other coeval faunas of the Iberian Peninsula and contrasts with the Upper Campanian¿Lower Maastrichtian sites where Gondwanan elements are frequent.This work was supported by the Hungarian Scientific Research Fund [grant number OTKA NF 84193]; the Spanish Ministry of Economy and Competitiveness (MINECO) [project numbers CGL2013-47521-P and CGL2014-535484].Szentesi, Z.; Company Rodríguez, J. (2017). Late Maastrichtian small-sized herpetofauna from Valencia province, eastern Spain. Historical Biology (Online). 29(1):43-52. https://doi.org/10.1080/08912963.2015.11220044352291Astibia, H., Buffetaut, E., Buscalioni, A. D., Cappetta, H., Corral, C., Estes, R., … Tong, H. (1990). The fossil vertebrates from Lano (Basque Country, Spain); new evidence on the composition and affinities of the Late Cretaceous continental faunas of Europe. Terra Nova, 2(5), 460-466. doi:10.1111/j.1365-3121.1990.tb00103.xBao, H., Koch, P. L., & Hepple, R. P. (1998). Hematite and calcite coatings on fossil vertebrates. Journal of Sedimentary Research, 68(5), 727-738. doi:10.2110/jsr.68.727Blain, H.-A., Canudo, J.-I., Cuenca-Bescós, G., & López-Martínez, N. (2010). Amphibians and squamate reptiles from the latest Maastrichtian (Upper Cretaceous) of Blasi 2 (Huesca, Spain). Cretaceous Research, 31(4), 433-446. doi:10.1016/j.cretres.2010.06.001Blanco, A., Bolet, A., Blain, H.-A., Fondevilla, V., & Marmi, J. (2016). Late Cretaceous (Maastrichtian) amphibians and squamates from northeastern Iberia. Cretaceous Research, 57, 624-638. doi:10.1016/j.cretres.2015.07.005Böhme, M., Ilg, A., Ossig, A., & Küchenhoff, H. (2006). New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. Geology, 34(6), 425. doi:10.1130/g22460.1Bown, T. M., & J. Kraus, M. (1981). Vertebrate fossil-bearing paleosol units (Willwood Formation, Lower Eocene, Northwest Wyoming, U.S.A.): Implications for taphonomy, biostratigraphy, and assemblage analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 34, 31-56. doi:10.1016/0031-0182(81)90057-2Codrea, V., Smith, T., Dica, P., Folie, A., Garcia, G., Godefroit, P., & Van Itterbeeck, J. (2002). Dinosaur egg nests, mammals and other vertebrates from a new Maastrichtian site of the Haţeg Basin (Romania). Comptes Rendus Palevol, 1(3), 173-180. doi:10.1016/s1631-0683(02)00021-0Canudo, J. I., Oms, O., Vila, B., Galobart, À., Fondevilla, V., Puértolas-Pascual, E., … Blanco, A. (2016). The upper Maastrichtian dinosaur fossil record from the southern Pyrenees and its contribution to the topic of the Cretaceous–Palaeogene mass extinction event. Cretaceous Research, 57, 540-551. doi:10.1016/j.cretres.2015.06.013Company J. 2004. Vertebrados continentales del Cretácico superior (Campaniense-Maastrichtiense) de Valencia [Continental vertebrates from the Upper Cretaceous (Campanian-Maastrichtian) of Valencia]. [doctoral thesis]. Valencia: Universidad de Valencia, p. 410 (Unpublished).Company, J., Ruiz-Omeñaca, J. I., & Pereda Suberbiola, X. (1999). Geologie en Mijnbouw, 78(3/4), 319-333. doi:10.1023/a:1003851316054Company, J., & Szentesi, Z. (2012). Amphibians from the Late Cretaceous Sierra Perenchiza Formation of the Chera Basin, Valencia Province, Spain. Cretaceous Research, 37, 240-245. doi:10.1016/j.cretres.2012.04.003Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X., & Brusatte, S. L. (2015). Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys, 469, 1-161. doi:10.3897/zookeys.469.8439Denton, R. K., & O’Neill, R. C. (1998). Parrisia neocesariensis, a new batrachosauroidid salamander and other amphibians from the Campanian of eastern North America. Journal of Vertebrate Paleontology, 18(3), 484-494. doi:10.1080/02724634.1998.10011076Estes, R. (1969). The Batrachosauroididae and Scapherpetontidae, Late Cretaceous and Early Cenozoic Salamanders. Copeia, 1969(2), 225. doi:10.2307/1442070Estes, R., & Sanchíz, B. (1982). Early Cretaceous Lower Vertebrates from Galve (Teruel), Spain. Journal of Vertebrate Paleontology, 2(1), 21-39. doi:10.1080/02724634.1982.10011915Evans, S. E., & Milner, A. R. (1993). Frogs and salamanders from the Upper Jurassic Morrison Formation (Quarry Nine, Como Bluff) of North America. Journal of Vertebrate Paleontology, 13(1), 24-30. doi:10.1080/02724634.1993.10011485Freeman, E. F. (2010). The large-scale extraction of microvertebrate fossils from sediment residues using Interfacial Methods. Proceedings of the Geologists’ Association, 121(1), 4-12. doi:10.1016/j.pgeola.2009.12.004Gheerbrant, E., Abrial, C., & Cappetta, H. (1997). Nouveaux sites a microvertébréscontinentaux du crétacé terminal des petites pyrénées (Haute-Garonne et Ariège, France). Geobios, 30, 257-269. doi:10.1016/s0016-6995(97)80031-9Grigorescu, D. (2010). The Latest Cretaceous fauna with dinosaurs and mammals from the Haţeg Basin — A historical overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(3-4), 271-282. doi:10.1016/j.palaeo.2010.01.030Grigorescu, D., Venczel, M., Csiki, Z., & Limberea, R. (1999). Geologie en Mijnbouw, 78(3/4), 301-314. doi:10.1023/a:1003890913328Hossini, S., & Rage, J.-C. (2000). Palaeobatrachid frogsfrom the earliest Miocene (Agenian) of France, with description of a new species. Geobios, 33(2), 223-231. doi:10.1016/s0016-6995(00)80019-4Laurent, Y., Bilotte, M., & Le Loeuff, J. (2002). Late Maastrichtian continental vertebrates from southwestern France: correlation with marine fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 187(1-2), 121-135. doi:10.1016/s0031-0182(02)00512-6Le Loeuff, J. (1991). The Campano-Maastrichtian vertebrate faunas from southern Europe and their relationships with other faunas in the world; palaeobiogeographical implications. Cretaceous Research, 12(2), 93-114. doi:10.1016/s0195-6671(05)80019-9López-Martı́nez, N., Canudo, J. I., Ardèvol, L., Suberbiola, X. P., Orue-Etxebarria, X., Cuenca-Bescós, G., … Feist, M. (2001). New dinosaur sites correlated with Upper Maastrichtian pelagic deposits in the Spanish Pyrenees: implications for the dinosaur extinction pattern in Europe. Cretaceous Research, 22(1), 41-61. doi:10.1006/cres.2000.0236Martín-Chivelet, J. (s. f.). Cretaceous. The Geology of Spain, 255-292. doi:10.1144/gospp.12Pereda-Suberbiola, X. (2009). Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review. Bulletin de la Société Géologique de France, 180(1), 57-71. doi:10.2113/gssgfbull.180.1.57Pereda-Suberbiola, X., Astibia, H., Murelaga, X., Elorza, J. J., & Gómez-Alday, J. J. (2000). Taphonomy of the Late Cretaceous dinosaur-bearing beds of the Laño Quarry (Iberian Peninsula). Palaeogeography, Palaeoclimatology, Palaeoecology, 157(3-4), 247-275. doi:10.1016/s0031-0182(99)00169-8Pereda-Suberbiol, X., Corral, J. C., Astibia, H., Badiola, A., Bardet, N., Berreteaga, A., … Torices, A. (2015). Late cretaceous continental and marine vertebrate assemblages from the Laño quarry (Basque-Cantabrian Region, Iberian Peninsula): an update. Journal of Iberian Geology, 41(1). doi:10.5209/rev_jige.2015.v41.n1.48658Richardson, J. L., & Hole, F. D. (1979). Mottling and Iron Distribution in a Glossoboralf-Haplaquoll Hydrosequence on a Glacial Moraine in Northwestern Wisconsin. Soil Science Society of America Journal, 43(3), 552-558. doi:10.2136/sssaj1979.03615995004300030024xRoćek, Z. (1994). Taxonomy and distribution of Tertiary discoglossids (Anura) of the genus Latonia V. Meyer,, 1843. Geobios, 27(6), 717-751. doi:10.1016/s0016-6995(94)80058-8Simonson, G. H., & Boersma, L. (1972). Soil Morphology and Water Table Relations: II. Correlation Between Annual Water Table Fluctuations and Profile Features. Soil Science Society of America Journal, 36(4), 649-653. doi:10.2136/sssaj1972.03615995003600040041xSzentesi, Z., & Venczel, M. (2010). An advanced anuran from the Late Cretaceous (Santonian) of Hungary. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 256(3), 291-302. doi:10.1127/0077-7749/2010/0054Szentesi, Z., & Venczel, M. (2012). A new discoglossid frog from the Upper Cretaceous (Santonian) of Hungary. Cretaceous Research, 34, 327-333. doi:10.1016/j.cretres.2011.11.012Szentesi, Z., Gardner, J. D., & Venczel, M. (2013). Albanerpetontid amphibians from the Late Cretaceous (Santonian) of Iharkút, Hungary, with remarks on regional differences in Late Cretaceous Laurasian amphibian assemblages. Canadian Journal of Earth Sciences, 50(3), 268-281. doi:10.1139/e2012-024Vasile, Ş., Csiki-Sava, Z., & Venczel, M. (2013). A new madtsoiid snake from the Upper Cretaceous of the Haţeg Basin, western Romania. Journal of Vertebrate Paleontology, 33(5), 1100-1119. doi:10.1080/02724634.2013.764882Venczel, M., Codrea, V., & Fărcaş, C. (2012). A new palaeobatrachid frog from the early Oligocene of Suceag, Romania. Journal of Systematic Palaeontology, 11(2), 179-189. doi:10.1080/14772019.2012.671790(2005). Palaeontology, 48(6). doi:10.1111/pala.2005.48.issue-6Veneman, P. L. M., Vepraskas, M. J., & Bouma, J. (1976). The physical significance of soil mottling in a Wisconsin toposequence. Geoderma, 15(2), 103-118. doi:10.1016/0016-7061(76)90081-1Vila, B., Sellés, A. G., & Brusatte, S. L. (2016). Diversity and faunal changes in the latest Cretaceous dinosaur communities of southwestern Europe. Cretaceous Research, 57, 552-564. doi:10.1016/j.cretres.2015.07.00
    corecore