151 research outputs found
Dynamic Image-Based Modelling of Kidney Branching Morphogenesis
Kidney branching morphogenesis has been studied extensively, but the
mechanism that defines the branch points is still elusive. Here we obtained a
2D movie of kidney branching morphogenesis in culture to test different models
of branching morphogenesis with physiological growth dynamics. We carried out
image segmentation and calculated the displacement fields between the frames.
The models were subsequently solved on the 2D domain, that was extracted from
the movie. We find that Turing patterns are sensitive to the initial conditions
when solved on the epithelial shapes. A previously proposed diffusion-dependent
geometry effect allowed us to reproduce the growth fields reasonably well, both
for an inhibitor of branching that was produced in the epithelium, and for an
inducer of branching that was produced in the mesenchyme. The latter could be
represented by Glial-derived neurotrophic factor (GDNF), which is expressed in
the mesenchyme and induces outgrowth of ureteric branches. Considering that the
Turing model represents the interaction between the GDNF and its receptor RET
very well and that the model reproduces the relevant expression patterns in
developing wildtype and mutant kidneys, it is well possible that a combination
of the Turing mechanism and the geometry effect control branching
morphogenesis
Series study of the One-dimensional S-T Spin-Orbital Model
We use perturbative series expansions about a staggered dimerized ground
state to compute the ground state energy, triplet excitation spectra and
spectral weight for a one-dimensional model in which each site has an S=\case
1/2 spin and a pseudospin , representing a doubly
degenerate orbital. An explicit dimerization is introduced to allow study of
the confinement of spinon excitations. The elementary triplet represents a
bound state of two spinons, and is stable over much of the Brillouine zone. A
special line is found in the gapped spin-liquid phase, on which the triplet
excitation is dispersionless. The formation of triplet bound states is also
investigated.Comment: 9 pages, 9 figure
Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice
At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg
antiferromagnet on a simple cubic lattice with competing first and second
neighbor exchanges (J1 and J2) is investigated using the non-linear spin wave
theory. We find existence of two phases: a two sublattice Neel phase for small
J2 (AF), and a collinear antiferromagnetic phase at large J2 (CAF). We obtain
the sublattice magnetizations and ground state energies for the two phases and
find that there exists a first order phase transition from the AF-phase to the
CAF-phase at the critical transition point, pc = 0.28. Our results for the
value of pc are in excellent agreement with results from Monte-Carlo
simulations and variational spin wave theory. We also show that the quartic 1/S
corrections due spin-wave interactions enhance the sublattice magnetization in
both the phases which causes the intermediate paramagnetic phase predicted from
linear spin wave theory to disappear.Comment: 19 pages, 4 figures, Fig. 1b modified, Appendix B text modifie
The partition function of interfaces from the Nambu-Goto effective string theory
We consider the Nambu-Goto bosonic string model as a description of the
physics of interfaces. By using the standard covariant quantization of the
bosonic string, we derive an exact expression for the partition function in
dependence of the geometry of the interface. Our expression, obtained by
operatorial methods, resums the loop expansion of the NG model in the "physical
gauge" computed perturbatively by functional integral methods in the
literature. Recently, very accurate Monte Carlo data for the interface free
energy in the 3d Ising model became avaliable. Our proposed expression compares
very well to the data for values of the area sufficiently large in terms of the
inverse string tension. This pattern is expected on theoretical grounds and
agrees with previous analyses of other observables in the Ising model.Comment: 28 pages, 4 figure
Maxwell's field coupled nonminimally to quadratic torsion: Induced axion field and birefringence of the vacuum
We consider a possible (parity conserving) interaction between the
electromagnetic field and a torsion field of spacetime. For
generic elementary torsion, gauge invariant coupling terms of lowest order fall
into two classes that are both nonminimal and {\it quadratic} in torsion. These
two classes are displayed explicitly. The first class of the type
yields (undesirable) modifications of the Maxwell equations. The second class
of the type doesn't touch the Maxwell equations but rather
modifies the constitutive tensor of spacetime. Such a modification can be
completely described in the framework of metricfree electrodynamics. We
recognize three physical effects generated by the torsion: (i) An axion field
that induces an {\em optical activity} into spacetime, (ii) a modification of
the light cone structure that yields {\em birefringence} of the vacuum, and
(iii) a torsion dependence of the {\em velocity of light.} We study these
effects in the background of a Friedmann universe with torsion. {\it File
tor17.tex, 02 August 2003}Comment: 6 page
The spectral gap for some spin chains with discrete symmetry breaking
We prove that for any finite set of generalized valence bond solid (GVBS)
states of a quantum spin chain there exists a translation invariant
finite-range Hamiltonian for which this set is the set of ground states. This
result implies that there are GVBS models with arbitrary broken discrete
symmetries that are described as combinations of lattice translations, lattice
reflections, and local unitary or anti-unitary transformations. We also show
that all GVBS models that satisfy some natural conditions have a spectral gap.
The existence of a spectral gap is obtained by applying a simple and quite
general strategy for proving lower bounds on the spectral gap of the generator
of a classical or quantum spin dynamics. This general scheme is interesting in
its own right and therefore, although the basic idea is not new, we present it
in a system-independent setting. The results are illustrated with an number of
examples.Comment: 48 pages, Plain TeX, BN26/Oct/9
High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States
In this article, we prove that exact representations of dimer and plaquette
valence-bond ket ground states for quantum Heisenberg antiferromagnets may be
formed via the usual coupled cluster method (CCM) from independent-spin product
(e.g. N\'eel) model states. We show that we are able to provide good results
for both the ground-state energy and the sublattice magnetization for dimer and
plaquette valence-bond phases within the CCM. As a first example, we
investigate the spin-half -- model for the linear chain, and we show
that we are able to reproduce exactly the dimerized ground (ket) state at
. The dimerized phase is stable over a range of values for
around 0.5. We present evidence of symmetry breaking by considering
the ket- and bra-state correlation coefficients as a function of . We
then consider the Shastry-Sutherland model and demonstrate that the CCM can
span the correct ground states in both the N\'eel and the dimerized phases.
Finally, we consider a spin-half system with nearest-neighbor bonds for an
underlying lattice corresponding to the magnetic material CaVO (CAVO).
We show that we are able to provide excellent results for the ground-state
energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes
of this model. The exact plaquette and dimer ground states are reproduced by
the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table
Particle density fluctuations
Event-by-event fluctuations in the multiplicities of charged particles and
photons at SPS energies are discussed. Fluctuations are studied by controlling
the centrality of the reaction and rapidity acceptance of the detectors.
Results are also presented on the event-by-event study of correlations between
the multiplicity of charged particles and photons to search for DCC-like
signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc
Suppression of High-p_T Neutral Pion Production in Central Pb+Pb Collisions at sqrt{s_NN} = 17.3 GeV Relative to p+C and p+Pb Collisions
Neutral pion transverse momentum spectra were measured in p+C and p+Pb
collisions at sqrt{s_NN} = 17.4 GeV at mid-rapidity 2.3 < eta_lab < 3.0 over
the range 0.7< p_T < 3.5 GeV/c. The spectra are compared to pi0 spectra
measured in Pb+Pb collisions at sqrt{s_NN} = 17.3 GeV in the same experiment.
For a wide range of Pb+Pb centralities (N_part < 300) the yield of pi0's with
p_T > 2 GeV/c is larger than or consistent with the p+C or p+Pb yields scaled
with the number of nucleon-nucleon collisions (N_coll), while for central Pb+Pb
collisions with N_part > 350 the pi0 yield is suppressed.Comment: 5 pages, 4 figure
Gravitational Lensing by Black Holes
We review the theoretical aspects of gravitational lensing by black holes,
and discuss the perspectives for realistic observations. We will first treat
lensing by spherically symmetric black holes, in which the formation of
infinite sequences of higher order images emerges in the clearest way. We will
then consider the effects of the spin of the black hole, with the formation of
giant higher order caustics and multiple images. Finally, we will consider the
perspectives for observations of black hole lensing, from the detection of
secondary images of stellar sources and spots on the accretion disk to the
interpretation of iron K-lines and direct imaging of the shadow of the black
hole.Comment: Invited article for the GRG special issue on lensing (P. Jetzer, Y.
Mellier and V. Perlick Eds.). 31 pages, 12 figure
- …