13 research outputs found

    A congenital activating mutant of WASp causes altered plasma membrane topography and adhesion under flow in lymphocytes

    No full text
    Leukocytes rely on dynamic actin-dependent changes in cell shape to pass through blood vessels, which is fundamental to immune surveillance. Wiskott-Aldrich Syndrome protein (WASp) is a hematopoietic cell–restricted cytoskeletal regulator important for modulating cell shape through Arp2/3-mediated actin polymerization. A recently identified WASpI294T mutation was shown to render WASp constitutively active in vivo, causing increased filamentous (F)–actin polymerization, high podosome turnover in macrophages, and myelodysplasia. The aim of this study was to determine the effect of WASpI294T expression in lymphocytes. Here, we report that lymphocytes isolated from a patient with WASpI294T, and in a cellular model of WASpI294T, displayed abnormal microvillar architecture, associated with an increase in total cellular F-actin. Microvillus function was additionally altered as lymphocytes bearing the WASpI294T mutation failed to roll normally on L-selectin ligand under flow. This was not because of defects in L-selectin expression, shedding, cytoskeletal anchorage, or membranal positioning; however, under static conditions of adhesion, WASpI294T-expressing lymphocytes exhibited altered dynamic interaction with L-selectin ligand, with a significantly reduced rate of adhesion turnover. Together, our results demonstrate that WASpI294T significantly affects lymphocyte membrane topography and L-selectin–dependent adhesion, which may be linked to defective hematopoiesis and leukocyte function in affected patients

    Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes

    Get PDF
    For several days after antigenic stimulation, human cytolytic T lymphocyte (CTL) clones exhibit a decrease in their effector activity and in their binding to human leukocyte antigen (HLA)-peptide tetramers. We observed that, when in this state, CTLs lose the colocalization of the T cell receptor (TCR) and CD8. Effector function and TCR-CD8 colocalization were restored with galectin disaccharide ligands, suggesting that the binding of TCR to galectin plays a role in the distancing of TCR from CD8. These findings appear to be applicable in vivo, as TCR was observed to be distant from CD8 on human tumor-infiltrating lymphocytes, which were anergic. These lymphocytes recovered effector functions and TCR-CD8 colocalization after ex vivo treatment with galectin disaccharide ligands. The separation of TCR and CD8 molecules could be one major mechanism of anergy in tumors and other chronic stimulation conditions
    corecore