238 research outputs found

    The effects of parasitism and body length on positioning within wild fish shoals

    Get PDF
    The influence of body length and parasitism on the positioning behaviour of individuals in wild fish shoals was investigated by a novel means of capturing entire shoals of the banded killifish (Fundulus diaphanus, Lesueur) using a grid-net that maintained the two-dimensional positions of individuals within shoals. Fish in the front section of a shoal were larger than those in the rear. Individuals parasitized by the digenean trematode (Crassiphiala bulboglossa, Haitsma) showed a tendency to occupy the front of shoals. Parasitized fish were also found more in peripheral positions than central ones in a significant number of shoals. Shoal geometry was affected by the overall parasite prevalence of shoal members; shoals with high parasite prevalence displayed increasingly phallanx-like shoal formations, whereas shoals with low prevalence were more elliptical. There was no relationship between body length and parasite abundance or prevalence in the fish population which suggests body length and parasite status are independent predictors of positioning behaviour. Solitary individuals found outside shoals were both more likely to be parasitized and had higher parasite abundance than individuals engaged in shoaling. Differences in the shoaling behaviour of parasitized and unparasitized fish are discussed in the context of the adaptive manipulation hypothesis

    Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding

    Get PDF
    Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition

    Potential Genetic Overlap Between Insomnia and Sleep Symptoms in Major Depressive Disorder: A Polygenic Risk Score Analysis

    Get PDF
    Background: The prevalence of insomnia and hypersomnia in depressed individuals is substantially higher than that found in the general population. Unfortunately, these concurrent sleep problems can have profound effects on the disease course. Although the full biology of sleep remains to be elucidated, a recent genome-wide association (GWAS) of insomnia, and other sleep traits in over 1 million individuals was recently published and provides many promising hits for genetics of insomnia in a population-based sample. Methods: Using data from the largest available GWAS of insomnia and other sleep traits, we sought to test if sleep variable PRS scores derived from population-based studies predicted sleep variables in samples of depressed cases [Psychiatric Genomics Consortium - Major Depressive Disorder subjects (PGC MDD)]. A leave-one-out analysis was performed to determine the effects that each individual study had on our results. Results: The only significant finding was for insomnia, where p-value threshold, p = 0.05 was associated with insomnia in our PGC MDD sample (R2 = 1.75−3, p = 0.006). Conclusion: Our results reveal that <1% of variance is explained by the variants that cover the two significant p-value thresholds, which is in line with the fact that depression and insomnia are both polygenic disorders. To the best of our knowledge, this is the first study to investigate genetic overlap between the general population and a depression sample for insomnia, which has important treatment implications, such as leading to novel drug targets in future research efforts

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF

    Performance of reconstruction and identification of τ leptons decaying to hadrons and vτ in pp collisions at √s=13 TeV

    Get PDF
    The algorithm developed by the CMS Collaboration to reconstruct and identify τ leptons produced in proton-proton collisions at √s=7 and 8 TeV, via their decays to hadrons and a neutrino, has been significantly improved. The changes include a revised reconstruction of π⁰ candidates, and improvements in multivariate discriminants to separate τ leptons from jets and electrons. The algorithm is extended to reconstruct τ leptons in highly Lorentz-boosted pair production, and in the high-level trigger. The performance of the algorithm is studied using proton-proton collisions recorded during 2016 at √s=13 TeV, corresponding to an integrated luminosity of 35.9 fb¯¹. The performance is evaluated in terms of the efficiency for a genuine τ lepton to pass the identification criteria and of the probabilities for jets, electrons, and muons to be misidentified as τ leptons. The results are found to be very close to those expected from Monte Carlo simulation

    Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at √s = 13 TeV

    Get PDF

    Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at √s = 13 TeV

    Get PDF

    Search for MSSM Higgs bosons decaying to μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF

    Pileup mitigation at CMS in 13 TeV data

    Get PDF
    With increasing instantaneous luminosity at the LHC come additional reconstruction challenges. At high luminosity, many collisions occur simultaneously within one proton-proton bunch crossing. The isolation of an interesting collision from the additional "pileup" collisions is needed for effective physics performance. In the CMS Collaboration, several techniques capable of mitigating the impact of these pileup collisions have been developed. Such methods include charged-hadron subtraction, pileup jet identification, isospin-based neutral particle "δβ" correction, and, most recently, pileup per particle identification. This paper surveys the performance of these techniques for jet and missing transverse momentum reconstruction, as well as muon isolation. The analysis makes use of data corresponding to 35.9 fb1^{-1} collected with the CMS experiment in 2016 at a center-of-mass energy of 13 TeV. The performance of each algorithm is discussed for up to 70 simultaneous collisions per bunch crossing. Significant improvements are found in the identification of pileup jets, the jet energy, mass, and angular resolution, missing transverse momentum resolution, and muon isolation when using pileup per particle identification
    corecore