130 research outputs found

    Nimbus-7 ERB Solar Analysis Tape (ESAT) user's guide

    Get PDF
    Seven years and five months of Nimbus-7 Earth Radiation Budget (ERB) solar data are available on a single ERB Solar Analysis Tape (ESAT). The period covered is November 16, 1978 through March 31, 1986. The Nimbus-7 satellite performs approximately 14 orbits per day and the ERB solar telescope observes the sun once per orbit as the satellite crosses the southern terminator. The solar data were carefully calibrated and screened. Orbital and daily mean values are given for the total solar irradiance plus other spectral intervals (10 solar channels in all). In addition, selected solar activity indicators are included on the ESAT. The ESAT User's Guide is an update of the previous ESAT User's Guide (NASA TM 86143) and includes more detailed information on the solar data calibration, screening procedures, updated solar data plots, and applications to solar variability. Details of the tape format, including source code to access ESAT, are included

    Characterization of a novel type of HIV-1 particle assembly inhibitor using a quantitative Luciferase-Vpr packaging-based assay

    Get PDF
    The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity

    A programme for risk assessment and minimisation of progressive multifocal leukoencephalopathy developed for vedolizumab clinical trials

    Get PDF
    Introduction Over the past decade, the potential for drug-associated progressive multifocal leukoencephalopathy (PML) has become an increasingly important consideration in certain drug development programmes, particularly those of immunomodulatory biologics. Whether the risk of PML with an investigational agent is proven (e.g. extrapolated from relevant experience, such as a class effect) or merely theoretical, the serious consequences of acquiring PML require careful risk minimisation and assessment. No single standard for such risk minimisation exists. Vedolizumab is a recently developed monoclonal antibody to α4β7 integrin. Its clinical development necessitated a dedicated PML risk minimisation assessment as part of a global preapproval regulatory requirement. Objective The aim of this study was to describe the multiple risk minimisation elements that were incorporated in vedolizumab clinical trials in inflammatory bowel disease patients as part of the risk assessment and minimisation of PML programme for vedolizumab. Methods A case evaluation algorithm was developed for sequential screening and diagnostic evaluation of subjects who met criteria that indicated a clinical suspicion of PML. An Independent Adjudication Committee provided an independent, unbiased opinion regarding the likelihood of PML. Results Although no cases were detected, all suspected PML events were thoroughly reviewed and successfully adjudicated, making it unlikely that cases were missed. Conclusion We suggest that this programme could serve as a model for pragmatic screening for PML during the clinical development of new drugs

    Planning Future Strategies for Domestic and International NeuroAIDS Research, July 24–25, 2008

    Get PDF
    The National Institute of Mental Health in cooperation with the National Institute on Drug Abuse and the National Institute of Neurological Disorders and Stroke organized a meeting on July 24–25, 2008 to develop novel research directions for neuroAIDS research. The deliberations of this meeting are outlined in this brief report. Several critical research areas in neuroAIDS were identified as areas of emphasis. Opportunities for collaborations between large NIH-funded projects were also discussed

    Lineage pathway of human brain progenitor cells identified by JC virus susceptibility

    Get PDF
    Multipotential human central nervous system progenitor cells, isolated from human fetal brain tissue by selective growth conditions, were cultured as undifferentiated, attached cell layers. Selective differentiation yielded highly purified populations of neurons or astrocytes. This report describes the novel use of this cell culture model to study cell type-specific recognition of a human neurotropic virus, JC virus. Infection by either JC virions or a plasmid encoding the JC genome demonstrated susceptibility in astrocytes and, to a lesser degree, progenitor cells, whereas neurons remained nonpermissive. JC virus susceptibility correlated with significantly higher expression of the NFI-X transcription factor in astrocytes than in neurons. Furthermore, transfection of an NFI-X expression vector into progenitor-derived neuronal cells before infection resulted in viral protein production. These results indicate that susceptibility to JC virus infection occurs at the molecular level and also suggest that differential recognition of the viral promoter sequences can predict lineage pathways of multipotential progenitor cells in the human central nervous system. Neurol 2003;53:636 -646 The differentiation of central nervous system (CNS) stem and progenitor cells into neuronal and glial lineages is accompanied by the expression of specific intracellular molecules involved in the transcription of cell type-specific genes. The selective differentiation of human CNS progenitor cells into neural cell types provides a unique model to study the molecular regulation of cellular phenotypes as well as neurotropic viruses that target specific subpopulations of CNS cells. For example, the human polyomavirus, JC virus (JCV), demonstrates a restricted cellular host range and tropism in the CNS, targeting glial but not neuronal cells. Ann 1,2 Lytic infection of oligodendrocytes results in the fatal demyelinating disease, progressive multifocal leukoencephalopathy. 1,2 JCV infects astrocytes both in vivo and in vitro but does not infect neuronal cells, JCV is unique among most viruses in that viral binding and entry do not predict susceptibility to infection. 7 Therefore, it is hypothesized that the selective tropism of JCV is governed by molecular determinants, namely, nuclear transcription factors located within susceptible cells. The promoter-enhancer region of JCV contains multiple sites for the nuclear factor-1 (NFI) family of transcription factors, 8 -10 which includes four members, NFI-A, NFI-B, NFI-C, and NFI-X 11,12 (also known as NFI-D). NFI has been implicated in the transcriptional regulation of several CNS-specific cellular genes 12-17 and viral replication, 18 -21 including that of JCV. The human CNS multipotential progenitor cells, described in this study, were used as a unique in vitro model to study the molecular regulation of JCV infection and to examine the potential role of NFI transcription factors in initiating viral multiplication in specific subpopulations of CNS cell types. The data presented in this article are the first to our knowledge demonstrating JCV infection of a population of human CNS progenitor cells. These experiments indicate that susceptibility to infection depends not on viral binding and entry, but on intracellular factors. Notably, overexpression of one of the NFI class members, NFI-X, in the neuronal cells initiated JCV susceptibility. These data substantiate the importance of NFI-X recognition in the transcriptional regulation of JCV susceptibility From th

    DNA-binding transcription factor NF-1A negatively regulates JC virus multiplication

    Get PDF
    JC virus (JCV) DNA replication occurs in the nuclei of infected cells. The level of JCV genome expression depends on nucleotide sequences in the viral regulatory region and their interaction with host-cell nuclear transcription factors. Our previous studies showed a higher level of NF-1X in JCV-permissive cells compared with the other members of the NF-1 family, NF-1A, B and C, which suggests that NF-1X plays a positive role in JCV multiplication. It remained unclear whether a reduction in the level of NF-1A, which is expressed abundantly in JCV-non-permissive cell types, leads to an increase in JCV multiplication. In this study, we show that downregulation of NF-1A expression in JCV-non-susceptible progenitor and HeLa cells results in a reversion to susceptibility for JCV multiplication. These data demonstrate that a higher level of NF-1A protein in JCV-non-permissive cell types, compared with the level of NF-1X, may be acting as a negative regulator at the JCV promoter to control JCV multiplication
    • …
    corecore