2,580 research outputs found

    Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification

    Get PDF
    We report on an active synchronization between two independent mode-locked lasers using a combined electronic-optical feedback. With this scheme, seed pulses at MHz repetition rate were amplified in a non-collinear optical parametric chirped pulse amplifier (OPCPA). The amplifier was seeded with stretched 1.5 nJ pulses from a femtosecond Ti:Sapphire oscillator, while pumped with the 1 ps, 2.9 µJ frequency-doubled output of an Yb:YAG thin-disk oscillator. The residual timing jitter between the two oscillators was suppressed to 120 fs (RMS), allowing for an efficient and broadband amplification at 11.5 MHz to a pulse energy of 700 nJ and an average power of 8 W. First compression experiment with 240 nJ amplified pulse energy resulted in a pulse duration of ~10 fs

    The Hemocompatibility of a Nitric Oxide Generating Polymer that Catalyzes S-nitrosothiol Decomposition in an Extracorporeal Circulation Model

    Get PDF
    Nitric oxide (NO) generating (NOGen) materials have been shown previously to create localized increases in NO concentration by the catalytic decomposition of blood S-nitrosothiols (RSNO) via copper (Cu)-containing polymer coatings and may improve extracorporeal circulation (ECC) hemocompatibility. In this work, a NOGen polymeric coating composed of a Cuo-nanoparticle (80 nm)-containing hydrophilic polyurethane (SP-60D-60) combined with the intravenous infusion of an RSNO, S- nitroso-N-acetylpenicillamine (SNAP), is evaluated in a 4 h rabbit thrombogenicity model and the anti-thrombotic mechanism is investigated. Polymer films containing 10 wt.% Cuo-nanoparticles coated on the inner walls of ECC circuits are employed concomitantly with systemic SNAP administration (0.1182 μmol/kg/min) to yield significantly reduced ECC thrombus formation compared to polymer control + systemic SNAP or 10 wt.% Cu NOGen + systemic saline after 4 h blood exposure (0.4 ± 0.2 NOGen/SNAP vs 4.9 ± 0.5 control/SNAP or 3.2 ± 0.2 pixels/cm2 NOGen/saline). Platelet count (3.9 ± 0.7 NOGen/SNAP vs 1.8 ± 0.1 control/SNAP or 3.0 ± 0.2 × 108/ml NOGen/saline) and plasma fibrinogen levels were preserved after 4 h blood exposure with the NOGen/SNAP combination vs either the control/SNAP or the NOGen/saline groups. Platelet function as measured by aggregometry (51 ± 9 NOGen/SNAP vs 49 ± 3% NOGen/saline) significantly decreased in both the NOGen/SNAP and NOGen/saline groups while platelet P-selectin mean fluorescence intensity (MFI) as measured by flow cytometry was not decreased after 4 h on ECC to ex vivo collagen stimulation (26 ± 2 NOGen/SNAP vs 29 ± 1 MFI baseline). Western blotting showed that fibrinogen activation as assessed by Aγ dimer expression was reduced after 4 h on ECC with NOGen/SNAP (68 ± 7 vs 83 ± 3% control/SNAP). These results suggest that the NOGen polymer coating combined with SNAP infusion preserves platelets in blood exposure to ECCs by attenuating activated fibrinogen and preventing platelet aggregation. These NO-mediated platelet changes were shown to improve thromboresistance of the NOGen polymer-coated ECCs when adequate levels of RSNOs are present

    Prevalence of Campylobacter Species in Adult Crohn's Disease and the Preferential Colonization Sites of Campylobacter Species in the Human Intestine

    Get PDF
    INTRODUCTION: Crohn's disease (CD) and ulcerative colitis (UC) are the two major forms of inflammatory bowel disease (IBD). A high prevalence of Campylobacter concisus was previously detected in paediatric CD and adult UC. Currently, the prevalence of C. concisus in adult CD and the preferential colonization sites of Campylobacter species in the human intestine are unknown. In this study, we examined the prevalence of Campylobacter species in biopsies collected from multiple anatomic sites of adult patients with IBD and controls. METHODS: Three hundred and one biopsies collected from ileum, caecum, descending colon and rectum of 28 patients IBD (15 CD and 13 UC) and 33 controls were studied. Biopsies were used for DNA extraction and detection of Campylobacter species by PCR-sequencing and Campylobacter cultivation. RESULTS: A significantly higher prevalence of C. concisus in colonic biopsies of patients with CD (53%) was detected as compared with the controls (18%). Campylobacter genus-PCR positivity and C. concisus positivity in patients with UC were 85% and 77% respectively, being significantly higher than that in the controls (48% and 36%). C. concisus was more often detected in descending colonic and rectal biopsies from patients with IBD in comparison to the controls. C. concisus was isolated from patients with IBD. CONCLUSION: The high intestinal prevalence of C. concisus in patients with IBD, particularly in the proximal large intestine, suggests that future studies are needed to investigate the possible involvement of C. concisus in a subgroup of human IBD. To our knowledge, this is the first report of the association between adult CD and C. concisus as well as the first study of the preferential colonization sites of C. concisus in the human intestine

    Direct Observation of Propagating Gigahertz Coherent Guided Acoustic Phonons in Free Standing Single Copper Nanowires

    Full text link
    We report on gigahertz acoustic phonon waveguiding in free-standing single copper nanowires studied by femtosecond transient reflectivity measurements. The results are discussed on the basis of the semianalytical resolution of the Pochhammer and Chree equation. The spreading of the generated Gaussian wave packet of two different modes is derived analytically and compared with the observed oscillations of the sample reflectivity. These experiments provide a unique way to independently obtain geometrical and material characterization. This direct observation of coherent guided acoustic phonons in a single nano-object is also the first step toward nanolateral size acoustic transducer and comprehensive studies of the thermal properties of nanowires

    Effects of Oral Glucose Load on Endothelial Function and on Insulin and Glucose Fluctuations in Healthy Individuals

    Get PDF
    Background/aims. Postprandial hyperglycemia, an independent risk factor for cardiovascular disease, is accompanied by endothelial dysfunction. We studied the effect of oral glucose load on insulin and glucose fluctuations, and on postprandial endothelial function in healthy individuals in order to better understand and cope with the postprandial state in insulin resistant individuals. Methods. We assessed post-oral glucose load endothelial function (flow mediated dilation), plasma insulin, and blood glucose in 9 healthy subjects. Results. The largest increases in delta FMD values (fasting FMD value subtracted from postprandial FMD value) occurred at 3 hours after both glucose or placebo load, respectively: 4.80 ± 1.41 (P = .009) and 2.34 ± 1.47 (P = .15). Glucose and insulin concentrations achieved maximum peaks at one hour post-glucose load. Conclusion. Oral glucose load does not induce endothelial dysfunction in healthy individuals with mean insulin and glucose values of 5.6 mmol/L and 27.2 mmol/L, respectively, 2 hours after glucose load

    What we talk about when we talk about capacitance measured with the voltage-clamp step method

    Get PDF
    Capacitance is a fundamental neuronal property. One common way to measure capacitance is to deliver a small voltage-clamp step that is long enough for the clamp current to come to steady state, and then to divide the integrated transient charge by the voltage-clamp step size. In an isopotential neuron, this method is known to measure the total cell capacitance. However, in a cell that is not isopotential, this measures only a fraction of the total capacitance. This has generally been thought of as measuring the capacitance of the “well-clamped” part of the membrane, but the exact meaning of this has been unclear. Here, we show that the capacitance measured in this way is a weighted sum of the total capacitance, where the weight for a given small patch of membrane is determined by the voltage deflection at that patch, as a fraction of the voltage-clamp step size. This quantifies precisely what it means to measure the capacitance of the “well-clamped” part of the neuron. Furthermore, it reveals that the voltage-clamp step method measures a well-defined quantity, one that may be more useful than the total cell capacitance for normalizing conductances measured in voltage-clamp in nonisopotential cells

    Algebraic approach to quantum black holes: logarithmic corrections to black hole entropy

    Full text link
    The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As shown previously, for a neutral non-rotating black hole, such eigenvalues must be 2n2^{n}-fold degenerate if one constructs the black hole stationary states by means of a pair of creation operators subject to a specific algebra. We show that the algebra of these two building blocks exhibits U(2)U(1)×SU(2)U(2)\equiv U(1)\times SU(2) symmetry, where the area operator generates the U(1) symmetry. The three generators of the SU(2) symmetry represent a {\it global} quantum number (hyperspin) of the black hole, and we show that this hyperspin must be zero. As a result, the degeneracy of the nn-th area eigenvalue is reduced to 2n/n3/22^{n}/n^{3/2} for large nn, and therefore, the logarithmic correction term 3/2logA-3/2\log A should be added to the Bekenstein-Hawking entropy. We also provide a heuristic approach explaining this result, and an evidence for the existence of {\it two} building blocks.Comment: 15 pages, Revtex, to appear in Phys. Rev.

    Loop Quantum Gravity a la Aharonov-Bohm

    Full text link
    The state space of Loop Quantum Gravity admits a decomposition into orthogonal subspaces associated to diffeomorphism equivalence classes of spin-network graphs. In this paper I investigate the possibility of obtaining this state space from the quantization of a topological field theory with many degrees of freedom. The starting point is a 3-manifold with a network of defect-lines. A locally-flat connection on this manifold can have non-trivial holonomy around non-contractible loops. This is in fact the mathematical origin of the Aharonov-Bohm effect. I quantize this theory using standard field theoretical methods. The functional integral defining the scalar product is shown to reduce to a finite dimensional integral over moduli space. A non-trivial measure given by the Faddeev-Popov determinant is derived. I argue that the scalar product obtained coincides with the one used in Loop Quantum Gravity. I provide an explicit derivation in the case of a single defect-line, corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
    corecore