38 research outputs found

    REVISITING ANNA MOSCOWITZ\u27S KROSS\u27S CRITIQUE OF NEW YORK CITY\u27S WOMEN\u27S COURT: THE CONTINUED PROBLEM OF SOLVING THE PROBLEM OF PROSTITUTION WITH SPECIALIZED CRIMINAL COURTS

    Get PDF
    This article explores New York City\u27s non-traditional, judicially based response to prostitution. This article first recounts the history of New York City’s Women’s Court. It then examines the work of the Midtown Community Court, the “problem-solving court” established in 1993 to address criminal issues, like prostitution, in Midtown Manhattan. It also discusses the renewed concerns about sex work in New York and describe the movement, propelled by modern reformers, to address prostitution through specialty courts. It then contrasts the shared features and attributes of the Women’s Court and Midtown Court models. Finally, the article urges modern reformers to step back from the problem-solving court movement and their call for the creation of more such specialized criminal courts

    Closely related fungi employ diverse enzymatic strategies to degrade plant biomass

    Get PDF
    Background Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators. Aspergillus species form one of the best studied fungal genera in this field, and several species are used for the production of commercial enzyme cocktails. Results It is often assumed that related fungi use similar enzymatic approaches to degrade plant polysaccharides. In this study we have compared the genomic content and the enzymes produced by eight Aspergilli for the degradation of plant biomass. All tested Aspergilli have a similar genomic potential to degrade plant biomass, with the exception of A. clavatus that has a strongly reduced pectinolytic ability. Despite this similar genomic potential their approaches to degrade plant biomass differ markedly in the overall activities as well as the specific enzymes they employ. While many of the genes have orthologs in (nearly) all tested species, only very few of the corresponding enzymes are produced by all species during growth on wheat bran or sugar beet pulp. In addition, significant differences were observed between the enzyme sets produced on these feedstocks, largely correlating with their polysaccharide composition. Conclusions These data demonstrate that Aspergillus species and possibly also other related fungi employ significantly different approaches to degrade plant biomass. This makes sense from an ecological perspective where mixed populations of fungi together degrade plant biomass. The results of this study indicate that combining the approaches from different species could result in improved enzyme mixtures for industrial applications, in particular saccharification of plant biomass for biofuel production. Such an approach may result in a much better improvement of saccharification efficiency than adding specific enzymes to the mixture of a single fungus, which is currently the most common approach used in biotechnology.Peer reviewe

    Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression

    No full text
    In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway

    Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system

    No full text
    Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined. Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage. Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system

    Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system.

    Get PDF
    Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined.Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage.Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system

    Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system

    No full text
    Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined.Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage.Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system

    Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system.

    Get PDF
    Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined.Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage.Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system

    The Recombinase IntA Is Required for Excision of esp-Containing ICEEfm1 in Enterococcus faeciumâ–ż

    No full text
    Comparative genome analysis of Enterococcus faecium recently revealed that a genomic island containing the esp gene, referred to as the esp-containing pathogenicity island (esp PAI), can be transferred by conjugation and contains a partial Tn916-like element and an integrase gene, intA. Here, we characterize the role of intA in the excision of the esp PAI. An intA insertion-deletion mutant in E. faecium E1162 (E1162ΔintA) was constructed and in trans complemented with wild-type intA (E1162ΔintA::pEF30). Circular intermediates (CI) of excised esp PAI were determined using inverse PCR analysis on purified chromosomal DNA from strains E1162, E1162Δesp, E1162ΔintA, and E1162ΔintA::pEF30. In E1162 and E1162Δesp, CI of the esp PAI were detected. No CI were detected in E1162ΔintA, while in the complemented strain E1162ΔintA::pEF30 CI formation was restored, indicating that intA is essential for excision and subsequent mobilization of the esp-containing genomic island in E. faecium. Based on the fact that this island can be mobilized and is self-transmissible, we propose to change the name of the esp PAI to ICEEfm1
    corecore