28 research outputs found

    Influence of Shear-Thinning Rheology on the Mixing Dynamics in Taylor-Couette Flow

    Get PDF
    Non‐Newtonian rheology can have a significant effect on mixing efficiency, which remains poorly understood. The effect of shear‐thinning rheology in a Taylor‐Couette reactor is studied using a combination of particle image velocimetry and flow visualization. Shear‐thinning is found to alter the critical Reynolds numbers for the formation of Taylor vortices and the higher‐order wavy instability, and is associated with an increase in the axial wavelength. Strong shear‐thinning and weak viscoelasticity can also lead to sudden transitions in wavelength as the Reynolds number is varied. Finally, it is shown that shear‐thinning causes an increase in the mixing time within vortices, due to a reduction in their circulation, but enhances the axial dispersion of fluid in the reactor

    Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications

    Get PDF
    BackgroundDouble-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2alpha leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far.ResultsHere we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2alpha in yeast.ConclusionConsidering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors. Further implications of our findings for the evolution of the PKR family and for studying PKR/PKZ interactions with viral gene products and their roles in viral infections are discussed

    Virus genomes and virus-host interactions in aquaculture animals

    Full text link

    Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema : Subgroup analysis of the MEAD study

    Get PDF
    Background: Dexamethasone intravitreal implant 0.7 mg (DEX 0.7) was approved for treatment of diabetic macular edema (DME) after demonstration of its efficacy and safety in the MEAD registration trials. We performed subgroup analysis of MEAD study results to evaluate the efficacy and safety of DEX 0.7 treatment in patients with previously treated DME. Methods: Three-year, randomized, sham-controlled phase 3 study in patients with DME, best-corrected visual acuity (BCVA) of 34.68 Early Treatment Diabetic Retinopathy Study letters (20/200.20/50 Snellen equivalent), and central retinal thickness (CRT) 65300 \u3bcm measured by time-domain optical coherence tomography. Patients were randomized to 1 of 2 doses of DEX (0.7 mg or 0.35 mg), or to sham procedure, with retreatment no more than every 6 months. The primary endpoint was 6515-letter gain in BCVA at study end. Average change in BCVA and CRT from baseline during the study (area-under-the-curve approach) and adverse events were also evaluated. The present subgroup analysis evaluated outcomes in patients randomized to DEX 0.7 (marketed dose) or sham based on prior treatment for DME at study entry. Results: Baseline characteristics of previously treated DEX 0.7 (n = 247) and sham (n=261) patients were similar. In the previously treated subgroup, mean number of treatments over 3 years was 4.1 for DEX 0.7 and 3.2 for sham, 21.5 % of DEX 0.7 patients versus 11.1 % of sham had 6515-letter BCVA gain from baseline at study end (P = 0.002), mean average BCVA change from baseline was +3.2 letters with DEX 0.7 versus +1.5 letters with sham (P = 0.024), and mean average CRT change from baseline was -126.1 \u3bcm with DEX 0.7 versus -39.0 \u3bcm with sham(P < 0.001). Cataract-related adverse events were reported in 70.3 % of baseline phakic patients in the previously treated DEX 0.7 subgroup; vision gains were restored following cataract surgery. Conclusions: DEX 0.7 significantly improved visual and anatomic outcomes in patients with DME previously treated with laser, intravitreal anti-vascular endothelial growth factor, intravitreal triamcinolone acetonide, or a combination of these therapies. The safety profile of DEX 0.7 in previously treated patients was similar to its safety profile in the total study population

    Ranavirus Host Immunity and Immune Evasion

    Full text link

    Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD)

    Get PDF

    Improved Knockout Methodology Reveals That Frog Virus 3 Mutants Lacking either the 18K Immediate-Early Gene or the Truncated vIF-2α Gene Are Defective for Replication and Growth In Vivo ▿

    No full text
    To better assess the roles of frog virus 3 (FV3; genus Ranavirus, family Iridoviridae) genes in virulence and immune evasion, we have developed a reliable and efficient method to systematically knock out (KO) putative virulence genes by site-specific integration into the FV3 genome. Our approach utilizes a dual selection marker consisting of the puromycin resistance gene fused in frame with the enhanced green fluorescent protein (EGFP) reporter (Puro-EGFP cassette) under the control of the FV3 immediate-early (IE) 18K promoter. By successive rounds of selection for puromycin resistance and GFP expression, we have successfully constructed three recombinant viruses. In one, a “knock-in” mutant was created by inserting the Puro-EGFP cassette into a noncoding region of the FV3 genome (FV3-Puro/GFP). In the remaining two, KO mutants were constructed by replacement of the truncated viral homolog of eIF-2α (FV3-ΔvIF-2α) or the 18K IE gene (FV3-Δ18K) with the Puro-EGFP cassette. The specificity of recombination and the clonality of each mutant were confirmed by PCR, sequencing, and immunofluorescence microscopy. Viral replication of each recombinant in cell culture was similar to that of parental FV3; however, infection in Xenopus laevis tadpoles revealed that FV3-ΔvIF-2α and FV3-Δ18K replicated less and resulted in lower mortality than did GFP-FV3 and wild-type FV3. Our results suggest that 18K, which is conserved in all ranaviruses, and the truncated vIF-2α gene contribute to virulence. In addition, our study describes a powerful methodology that lays the foundation for the discovery of potentially new ranaviral genes involved in virulence and immune escape

    Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema: Subgroup analysis of the MEAD study

    Get PDF
    Background: Dexamethasone intravitreal implant 0.7 mg (DEX 0.7) was approved for treatment of diabetic macular edema (DME) after demonstration of its efficacy and safety in the MEAD registration trials. We performed subgroup analysis of MEAD study results to evaluate the efficacy and safety of DEX 0.7 treatment in patients with previously treated DME. Methods: Three-year, randomized, sham-controlled phase 3 study in patients with DME, best-corrected visual acuity (BCVA) of 34.68 Early Treatment Diabetic Retinopathy Study letters (20/200.20/50 Snellen equivalent), and central retinal thickness (CRT) 65300 \u3bcm measured by time-domain optical coherence tomography. Patients were randomized to 1 of 2 doses of DEX (0.7 mg or 0.35 mg), or to sham procedure, with retreatment no more than every 6 months. The primary endpoint was 6515-letter gain in BCVA at study end. Average change in BCVA and CRT from baseline during the study (area-under-the-curve approach) and adverse events were also evaluated. The present subgroup analysis evaluated outcomes in patients randomized to DEX 0.7 (marketed dose) or sham based on prior treatment for DME at study entry. Results: Baseline characteristics of previously treated DEX 0.7 (n = 247) and sham (n=261) patients were similar. In the previously treated subgroup, mean number of treatments over 3 years was 4.1 for DEX 0.7 and 3.2 for sham, 21.5 % of DEX 0.7 patients versus 11.1 % of sham had 6515-letter BCVA gain from baseline at study end (P = 0.002), mean average BCVA change from baseline was +3.2 letters with DEX 0.7 versus +1.5 letters with sham (P = 0.024), and mean average CRT change from baseline was -126.1 \u3bcm with DEX 0.7 versus -39.0 \u3bcm with sham(P < 0.001). Cataract-related adverse events were reported in 70.3 % of baseline phakic patients in the previously treated DEX 0.7 subgroup; vision gains were restored following cataract surgery. Conclusions: DEX 0.7 significantly improved visual and anatomic outcomes in patients with DME previously treated with laser, intravitreal anti-vascular endothelial growth factor, intravitreal triamcinolone acetonide, or a combination of these therapies. The safety profile of DEX 0.7 in previously treated patients was similar to its safety profile in the total study population
    corecore