14 research outputs found

    Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC

    Get PDF
    Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth

    Phosphorylation of IGFBP-1 at discrete sites elicits variable effects on IGF-I receptor autophosphorylation

    No full text
    Wepreviously demonstrated that hypoxia and leucine deprivation cause hyperphosphorylation of IGF-binding protein-1 (IGFBP-1) at discrete sites that markedly enhanced IGF-I affinityandinhibited IGF-I-stimulated cell growth. In this study we investigated the functional role of these phosphorylation sites using mutagenesis. We created three IGFBP-1 mutants in which individual serine (S119/S169/S98) residues were substituted with alanine and S101A was recreated for comparison. The wild-type (WT) and mutant IGFBP-1 were expressed in Chinese hamster ovary cells and IGFBP-1 in cell media was isolated using isoelectric-focusing-free-flow electrophoresis. BIACore analysis indicated that the changes in IGF-I affinity for S98A and S169A were moderate, whereas S119A greatly reduced the affinity of IGFBP-1 for IGF-I (100-fold, P\u3c.0001). Similar results were obtained with S101A. The IGF-I affinity changes of the mutants were reflected in their ability to inhibit IGF-I-induced receptor autophosphorylation. Employing receptor-stimulation assay using IGF-IRoverexpressing P6 cells, we found that WT-IGFBP-1 inhibited IGF-IRβ autophosphorylation (̃2- fold, P \u3c .001), possibly attributable to sequestration of IGF-I. Relative to WT, S98A and S169A mutants did not inhibit receptor autophosphorylation. S119A, on the other hand, greatly stimulated the receptor (2.3-fold, P\u3c.05). The data with S101A matched S119A. In summary, we show that phosphorylation at S98 and S169 resulted in milder changes in IGF-I action; nonetheless most dramatic inhibitory effects on the biological activity of IGF-I were due to IGFBP-1 phosphorylation at S119. Our resultsprovidenoveldemonstrationthatIGFBP- 1phosphorylationatS119canenhanceaffinityforIGF-I possibly through stabilization of the IGF-IGFBP-1 complex. These data also propose that the synergistic interaction of distinct phosphorylation sites may be important in eliciting more pronounced effects on IGF-I affinity that needs further investigation. Copyright © 2013 by The Endocrine Society

    Site Specific Phosphorylation of Insulin-Like Growth Factor Binding Protein-1 (IGFBP-1) for Evaluating Clinical Relevancy in Fetal Growth Restriction

    No full text
    Fetal growth restriction (FGR) is a leading cause of fetal and neonatal morbidity and mortality. Insulin-like growth factor binding protein-1 (IGFBP-1) is one of the major insulin-like growth factor (IGF) binding proteins involved in fetal growth and development. Our recent data shows that phosphorylation of IGFBP-1 carries both functional and biological relevance in FGR. Considering that IGFBP-1 phosphorylation can be valuable in diagnostics, we examined strategies to enrich IGFBP-1 so that its phosphorylation sites could be assessed by mass spectrometry (MS). Using \u3c1 mL of human amniotic\u3efluid, widely employed immunoprecipitation with IGFBP-1 monoclonal antibody (Mab 6303) coenriched IgGs that interfered with MS. Covalent coupling of Mab 6303 with Seize immunoprecipitation resin (Pierce) mitigated this drawback. However, LC-MS/MS analysis with the titanium dioxide (TiO(2)) enriched IGFBP-1 phosphopeptides in the immunoprecipitated samples revealed pSer101 and pSer119, but not pSer169 nor pSer98 of the previously identified phosphorylation sites. The alternative, ZOOM isoelectric focusing (IEF) (Invitrogen) rendered low-IGFBP-1 recovery with overlapping albumin. Subsequently, depletion of albumin using Affi-GelBlue gel (Bio-Rad) maximized IGFBP-1 yield. ELISA estimation showed approximately 8.5% residual albumin (3.73 x 10(5) +/- 2.35 x 10(5) ng/mL), whereas up to approximately 68% IGFBP-1 was recovered (1.36 x 10(3) +/- 0.174 x 10(3) microg/L, IEMA). LC-MS/MS analysis with the albumin depleted samples detected all four expected phosphorylation sites. Additionally, LC-MS analysis semiquantitatively indicated much reduced phosphopeptide peak intensities, approximately 20-fold with pSer169 and approximately 10-fold lower with pSer98 sites as compared to pSer101. With the use of our depletion strategy, this study offers a novel simple proteomic approach to enrich IGFBP-1 for identification of site-specific changes in IGFBP-1 phosphorylation. This strategy will be vital in performing differential IGFBP-1 phosphorylation profiling clinically, to help establish its link with FGR and develop diagnostic assays, as well as elucidating novel mechanisms potentially involved in regulation of fetal growth

    Site-Specific IGFBP-1 Hyper-Phosphorylation in Fetal Growth Restriction: Clinical and Functional Relevance

    No full text
    Phosphorylation enhances IGFBP-1 binding to IGF-I, thereby limiting the bioavailability of IGF-I that may be important in fetal growth. Our goal in this study was to determine whether changes in site-specific IGFBP-1 phosphorylation were unique to fetal growth restriction. To establish a link, we compared IGFBP-1 phosphorylation (sites and degree) in amniotic fluid from FGR (N = 10) and controls (N = 12). The concentration of serine phosphorylated IGFBP-1 showed a negative correlation with birth weight in FGR (P = 0.049). LC-MS/MS analysis revealed all four previously identified phosphorylation sites (Ser98, Ser101, Ser119, and Ser169) to be common to FGR and control groups. Relative phosphopeptide intensities (LC-MS) between FGR and controls demonstrated 4-fold higher intensity for Ser101 (P = 0.026), 7-fold for Ser98/Ser101 (P = 0.02), and 23-fold for Ser169 (P = 0.002) in the FGR group. Preliminary BIAcore data revealed 4-fold higher association and 1.7-fold lower dissociation constants for IGFBP-1/IGF-I in FGR. A structural model of IGFBP-1 bound to IGF-I indicates that all the phosphorylation sites are on relatively mobile regions of the IGFBP-1 sequence. Residues Ser98, Ser101, and Ser169 are close to structured regions that are involved in IGF-I binding and, therefore, could potentially make direct contact with IGF-I. On the other hand, residue Ser119 is in the middle of the unstructured linker that connects the N- and C-terminal domains of IGFBP-1. The model is consistent with the assumption that residues Ser98, Ser101, and Ser169 could directly interact with IGF-I, and therefore phosphorylation at these sites could change IGF-I interactions. We suggest that site-specific increase in IGFBP-1 phosphorylation limits IGF-I bioavailability, which directly contributes to the development of FGR. This study delineates the potential role of higher phosphorylation of IGFBP-1 in FGR and provides the basis to substantiate these findings with larger sample size

    Hypoxia Increases IGFBP-1 Phosphorylation Mediated by mTOR Inhibition

    No full text
    In fetal growth restriction (FGR), fetal growth is limited by reduced nutrient and oxygen supply. Insulin-like growth factor I (IGF-I) is a key regulator of fetal growth and IGF binding protein -1(IGFBP-1) is the principal regulator of fetal IGF-I bioavailability. Phosphorylation enhances IGFBP-1’s affinity for IGF-I. Hypoxia induces IGFBP-1 hyperphosphorylation, markedly decreasing IGF-I bioavailability. We recently reported that fetal liver IGFBP-1 hyperphosphorylation is associated with inhibition of the mechanistic target of rapamycin (mTOR) in a nonhuman primate model of FGR. Here, we test the hypothesis that IGFBP-1 hyperphosphorylation in response to hypoxia is mediated by mTOR inhibition. We inhibited mTOR either by rapamycin or small interfering RNA (siRNA) targeting raptor (mTOR complex [mTORC]1) and/or rictor (mTORC2) in HepG2 cells cultured under hypoxia (1% O2) or basal (20% O2) conditions. Conversely, we activated mTORC1 or mTORC1+mTORC2 by silencing endogenous mTOR inhibitors (tuberous sclerosis complex 2/DEP-domain-containing and mTOR-interacting protein). Immunoblot analysis demonstrated that both hypoxia and inhibition of mTORC1 and/or mTORC2 induced similar degrees of IGFBP-1 phosphorylation at Ser101/119/169 and reduced IGF-I receptor autophosphorylation. Activation of mTORC1+mTORC2 or mTORC1 alone prevented IGFBP-1 hyperphosphorylation in response to hypoxia. Multiple reaction monitoring-mass spectrometry showed that rapamycin and/or hypoxia increased phosphorylation also at Ser98 and at a novel site Ser174. In silico structural analysis indicated that Ser174 was in close proximity to the IGF-binding site. Together, we demonstrate that signaling through the mTORC1 or mTORC2 pathway is sufficient to induce IGFBP-1 hyperphosphorylation in response to hypoxia. This study provides novel understanding of the cellular mechanism that controls fetal IGFBP-1 phosphorylation in hypoxia, and we propose that mTOR inhibition constitutes a mechanistic link between hypoxia, reduced IGF-I bioavailability and FGR

    Exposure of decidualized HIESC to low oxygen tension and leucine deprivation results in increased IGFBP-1 phosphorylation and reduced IGF-I bioactivity

    No full text
    Phosphorylation of decidual IGFBP-1 enhances binding of IGF-I, limiting the bioavailability of this growth factor which may contribute to reduced placental and fetal growth. The mechanisms regulating decidual IGFBP-1 phosphorylation are incompletely understood. Using decidualized human immortalized endometrial stromal cells we tested the hypothesis that low oxygen tension or reduced leucine availability, believed to be common in placental insufficiency, increase the phosphorylation of decidual IGFBP-1. Multiple reaction monitoring-MS (MRM-MS) was used to quantify IGFBP-1 phosphorylation. MRM-MS validated the novel phosphorylation of IGFBP-1 at Ser58, however this site was unaffected by low oxygen tension/leucine deprivation. In contrast, significantly elevated phosphorylation was detected for pSer119, pSer98/pSer101 and pSer169/pSer174 sites. Immunoblotting and dual-immunofluorescence using phosphosite-specific IGFBP-1 antibodies further demonstrated increased IGFBP-1 phosphorylation in HIESC under both treatments which concomitantly reduced IGF-I bioactivity. These data support the hypothesis that down regulation of IGF-I signaling links decidual IGFBP-1 hyperphosphorylation to restricted fetal growth in placental insufficiency

    Inhibition of decidual IGF-1 signaling in response to hypoxia and leucine deprivation is mediated by mTOR and AAR pathways and increased IGFBP-1 phosphorylation.

    No full text
    Decidual mechanistic target of rapamycin (mTOR) is inhibited, amino acid response (AAR) and protein kinase CK2 are activated, and IGF (insulin-like growth factor) binding protein (IGFBP)-1 is hyperphosphorylated in human intrauterine growth restriction (IUGR). Using decidualized human immortalized endometrial stromal cells (HIESC), we hypothesized that hypoxia and leucine deprivation causing inhibition of decidual IGF-1 signaling is mediated by mTOR, AAR, CK2 and IGFBP-1 phosphorylation. Mass spectrometry demonstrated that hypoxia (1%

    Liver mTOR controls IGF-I bioavailability by regulation of protein kinase CK2 and IGFBP-1 phosphorylation in fetal growth restriction

    No full text
    Fetal growth restriction (FGR) increases the risk for perinatal complications and predisposes the infant to diabetes and cardiovascular disease later in life. No treatment for FGR is available, and the underlying pathophysiology remains poorly understood. Increased IGFBP-1 phosphorylation has been implicated as an important mechanism by which fetal growth is reduced. However, to what extent circulating IGFBP-1 is phosphorylated in FGR is unknown, and the molecular mechanisms linking FGR to IGFBP-1 phosphorylation have not been established. We used umbilical cord plasma of appropriate for gestational age (AGA) and growth-restricted human fetuses and determined IGFBP-1 and IGF-I concentrations (ELISA) and site-specific IGFBP-1 phosphorylation (Western blotting using IGFBP-1 phospho-site specific antibodies). In addition, we used a baboon model of FGR produced by 30% maternal nutrient restriction and determined mammalian target of rapamycin (mTOR)C1 activity, CK2 expression/activity, IGFBP-1 expression and phosphorylation, and IGF-I levels in baboon fetal liver by Western blot, enzymatic assay, and ELISA. HepG2 cells and primary fetal baboon hepatocytes were used to explore mechanistic links between mTORC1 signaling and IGFBP-1 phosphorylation. IGFBP-1 was hyperphosphorylated at Ser101, Ser119, and Ser169 in umbilical plasma of human FGR fetuses. IGFBP-1 was also hyperphosphorylated at Ser101, Ser119, and Ser169 in the liver of growth-restricted baboon fetus. mTOR signaling was markedly inhibited, whereas expression and activity of CK2 was increased in growth-restricted baboon fetal liver in vivo. Using HepG2 cells and primary fetal baboon hepatocytes, we established a mechanistic link between mTOR inhibition, CK2 activation, IGFBP-1 hyperphosphorylation, and decreased IGF-I-induced IGF-I receptor autophosphorylation. We provide clear evidence for IGFBP-1 hyperphosphorylation in FGR and identified an mTOR and CK2-mediated mechanism for regulation of IGF-I bioavailability. Our findings are consistent with the model that inhibition of mTOR in the fetal liver, resulting in increased CK2 activity and IGFBP-1 hyperphosphorylation, constitutes a novel mechanistic link between nutrient deprivation and restricted fetal growth. Copyright © 2014 by the Endocrine Society

    Co-Localization of Insulin-Like Growth Factor Binding Protein-1, Casein Kinase-2β, and Mechanistic Target of Rapamycin in Human Hepatocellular Carcinoma Cells as Demonstrated by Dual Immunofluorescence and in Situ Proximity Ligation Assay

    No full text
    Insulin-like growth factor binding protein (IGFBP)-1 influences fetal growth by modifying insulin-like growth factor-I (IGF-I) bioavailability. IGFBP-1 phosphorylation, which markedly increases its affinity for IGF-I, is regulated by mechanistic target of rapamycin (mTOR) and casein kinase (CSNK)-2. However, the underlying molecular mechanisms remain unknown. We examined the cellular localization and potential interactions of IGFBP-1, CSNK-2β, and mTOR as a prerequisite for protein-protein interaction. Analysis of dual immunofluorescence images indicated a potential perinuclear co-localization between IGFBP-1 and CSNK-2β and a nuclear co-localization between CSNK-2β and mTOR. Proximity ligation assay (PLA) indicated proximity between IGFBP-1 and CSNK-2β as well as mTOR and CSNK-2β but not between mTOR and IGFBP-1. Three-dimensional rendering of the PLA images validated that IGFBP-1 and CSNK-2β interactions were in the perinuclear region and mTOR and CSNK-2β interactions were also predominantly perinuclear rather than nuclear as indicated by mTOR and CSNK-2β co-localization. Compared with control, hypoxia and rapamycin treatment showed markedly amplified PLA signals for IGFBP-1 and CSNK-2β (approximately 18-fold, P = 0.0002). Stable isotope labeling with multiple reaction monitoring-mass spectrometry demonstrated that hypoxia and rapamycin treatment increased IGFBP-1 phosphorylation at Ser98/Ser101/Ser119/Ser174 but most considerably (106-fold) at Ser169. We report interactions between CSNK-2β and IGFBP-1 as well as mTOR and CSNK-2β, providing strong evidence of a mechanistic link between mTOR and IGF-I signaling, two critical regulators of cell growth via CSNK-2
    corecore