123 research outputs found

    Two sides of a coin: a critical review, and mathematical and phenomenological study of what we call hydromechanical coupling

    Get PDF
    In this paper a brief and critical review of the current literature on hydro-mechanical coupling is presented. Furthermore, anenhanced discrete element model is used to investigate the mutual relationship of soil water retention curve and suction stress curves and how the two are affected as a result of change in the initial porosity of the soil sample. The model revealed the suction stress values in wetting were less affected as in drying branch as a result of the change in the initial porosity of the soil sample

    Star Product and Invariant Integration for Lie type Noncommutative Spacetimes

    Full text link
    We present a star product for noncommutative spaces of Lie type, including the so called ``canonical'' case by introducing a central generator, which is compatible with translations and admits a simple, manageable definition of an invariant integral. A quasi-cyclicity property for the latter is shown to hold, which reduces to exact cyclicity when the adjoint representation of the underlying Lie algebra is traceless. Several explicit examples illuminate the formalism, dealing with kappa-Minkowski spacetime and the Heisenberg algebra (``canonical'' noncommutative 2-plane).Comment: 21 page

    A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions

    Full text link
    We define and discuss classical and quantum gravity in 2+1 dimensions in the Galilean limit. Although there are no Newtonian forces between massive objects in (2+1)-dimensional gravity, the Galilean limit is not trivial. Depending on the topology of spacetime there are typically finitely many topological degrees of freedom as well as topological interactions of Aharonov-Bohm type between massive objects. In order to capture these topological aspects we consider a two-fold central extension of the Galilei group whose Lie algebra possesses an invariant and non-degenerate inner product. Using this inner product we define Galilean gravity as a Chern-Simons theory of the doubly-extended Galilei group. The particular extension of the Galilei group we consider is the classical double of a much studied group, the extended homogeneous Galilei group, which is also often called Nappi-Witten group. We exhibit the Poisson-Lie structure of the doubly extended Galilei group, and quantise the Chern-Simons theory using a Hamiltonian approach. Many aspects of the quantum theory are determined by the quantum double of the extended homogenous Galilei group, or Galilei double for short. We study the representation theory of the Galilei double, explain how associated braid group representations account for the topological interactions in the theory, and briefly comment on an associated non-commutative Galilean spacetime.Comment: 38 pages, 1 figure, references update

    q-Quaternions and q-deformed su(2) instantons

    Get PDF
    We construct (anti)instanton solutions of a would-be q-deformed su(2) Yang-Mills theory on the quantum Euclidean space R_q^4 [the SO_q(4)-covariant noncommutative space] by reinterpreting the function algebra on the latter as a q-quaternion bialgebra. Since the (anti)selfduality equations are covariant under the quantum group of deformed rotations, translations and scale change, by applying the latter we can generate new solutions from the one centered at the origin and with unit size. We also construct multi-instanton solutions. As they depend on noncommuting parameters playing the roles of `sizes' and `coordinates of the centers' of the instantons, this indicates that the moduli space of a complete theory will be a noncommutative manifold. Similarly, gauge transformations should be allowed to depend on additional noncommutative parameters.Comment: Latex file, 39 pages. Final version appeared in JM

    SUq(2)SU_q(2) Lattice Gauge Theory

    Get PDF
    We reformulate the Hamiltonian approach to lattice gauge theories such that, at the classical level, the gauge group does not act canonically, but instead as a Poisson-Lie group. At the quantum level, it then gets promoted to a quantum group gauge symmetry. The theory depends on two parameters - the deformation parameter λ\lambda and the lattice spacing aa. We show that the system of Kogut and Susskind is recovered when λ0\lambda \rightarrow 0, while QCD is recovered in the continuum limit (for any λ\lambda). We thus have the possibility of having a two parameter regularization of QCD.Comment: 26 pages, LATEX fil

    Improving communication between postgraduate researchers and the university library: a case study at De Montfort University Library and Learning Services

    Get PDF
    A well-established postgraduate researcher development program has existed at De Montfort University for many years. Library and Learning Services include modules on literature searching skills and critical appraisal. However, we recognized that researchers seemed to be disengaged with the services on offer. This concern informed a research project that considered the ways we could communicate better with researchers based on their needs. This paper explores the essential components of successful communication, such as context, timeliness and communication channels. An action-research approach was taken including focus groups and online surveys. The outcomes highlighted three significant crisis points, emphasizing the key times when researchers might need some intervention. The findings of this research identified the distinct needs of Postgraduate Researchers (PGRs) and how relevant and timely communication from the library can meet these needs. It also considers the impact of how communication has improved with researchers as a result of some of our interventions

    Introduction to Quantum-Gravity Phenomenology

    Full text link
    After a brief review of the first phase of development of Quantum-Gravity Phenomenology, I argue that this research line is now ready to enter a more advanced phase: while at first it was legitimate to resort to heuristic order-of-magnitude estimates, which were sufficient to establish that sensitivity to Planck-scale effects can be achieved, we should now rely on detailed analyses of some reference test theories. I illustrate this point in the specific example of studies of Planck-scale modifications of the energy/momentum dispersion relation, for which I consider two test theories. Both the photon-stability analyses and the Crab-nebula synchrotron-radiation analyses, which had raised high hopes of ``beyond-Plankian'' experimental bounds, turn out to be rather ineffective in constraining the two test theories. Examples of analyses which can provide constraints of rather wide applicability are the so-called ``time-of-flight analyses'', in the context of observations of gamma-ray bursts, and the analyses of the cosmic-ray spectrum near the GZK scale.Comment: 46 pages, LaTex. Based on lectures given at the 40th Karpacz Winter School in Theoretical Physic

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.
    corecore