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00-956 Warsaw, Poland. e-mail: a.skalski@impan.pl

Received: 27 April 2012 / Revised: 14 January 2013 / Accepted: 26 January 2013
Published online: 17 February 2013 – © The Author(s) 2013. This article is published with
open access at Springerlink.com

Abstract. A natural scheme is established for the approximation of quantum Lévy pro-
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0. Introduction

In [19] we developed a theory of quantum stochastic convolution cocycles on
counital multiplier C∗-bialgebras, extending the algebraic theory of quantum Lévy
processes created by Schürmann and co-workers (see [25] and references therein,
and, for a simplified treatment [17]), and the topological theory of quantum
stochastic convolution cocycles on compact quantum groups and operator space
coalgebras developed by the authors [18]. Here we apply the results of [19] to
introduce and analyse a straightforward scheme for the approximation of such
cocycles by quantum random walks. In particular we obtain results on Markov-
regular quantum Lévy processes on locally compact quantum semigroups, extend-
ing and strengthening results in [11] for the compact case. Our analysis exploits
a recent approximation theorem of Belton [6], which extends that of [24] (used
in [11]). The approximation scheme closely mirrors the way in which Picard iter-
ation operates in the construction of solutions of quantum stochastic differential
equations [15].

The study of quantum random walks on quantum groups was initiated by Biane
in the early 1990s (starting with [7]). Some combinatorial, probabilistic and physical
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interpretations can be found in Chapter 5 of [21]. Recent work has concentrated
on discrete quantum groups and the development of (Poisson and Martin) bound-
ary theory for quantum random walks (see [22] and references therein).
Random walks of the type considered here and in [11] are discussed in [10] in
the context of finite quantum groups. For standard quantum stochastic cocycles
on operator algebras, operator spaces and Hilbert spaces (see [15], and references
therein), quantum random walk approximation [6,12,16,24] has seen recent appli-
cations in the probability theory and mathematical physics literature (e.g. [2,8]).

1. Preliminaries

In this section we briefly recall some definitions and relevant facts about strict
maps and their extensions, matrix spaces over an operator space, structure maps
with respect to a character on a C∗-algebra, multiplier C∗-bialgebras and quantum
stochastic convolution cocycles; we refer to [19] for a detailed account.

General notations. The multiplier algebra of a C∗-algebra A is denoted by M(A)
(in [19] the notation ˜A was used). The symbols ⊗ ,⊗ and ⊗ are used, respectively,
for linear/algebraic, spatial/minimal and ultraweak, tensor products of spaces, and
also, respectively, for linear, completely bounded and ultraweakly continuous com-
pletely bounded, tensor products of maps (see e.g. [9]). For a subset S of a vector
space V , its linear span is denoted Lin S. The following notations are used for vec-
tor functionals, bra-/-ket operators, ampliations and augmented spaces:

ωξ : B(h)→C, A �→ 〈ξ, Aξ 〉, |ξ 〉 :C→h, λ �→λξ, 〈ξ | := |ξ 〉∗ (ξ ∈h),

|h〉 := {|ξ 〉 : ξ ∈h}= B(C;h), ιh : B(H;H′)→ B(H⊗h;H′ ⊗h), T �→ T ⊗ Ih,

̂K :=C⊕K, ĉ :=
(

1
c

)

for c ∈K and �QS := P{0}⊕K =
[

0
IK

]

∈ B(̂K). (1.1)

Here h is a Hilbert space and context determines the Hilbert spaces H, H′ and (for
�QS) also K; the superscript QS is there to avoid confusion with coproducts.

1.1. STRICT MAPS AND THEIR EXTENSIONS

If A1,A2 are C∗-algebras then a map ϕ :A1 → M(A2) is called strict if it is bounded
and continuous in the strict topology on bounded subsets. The space of all such
maps is denoted Bβ(A1; M(A2)). Each map ϕ ∈ Bβ(A1; M(A2)) has a unique strict
extension ϕ̃ : M(A1)→ M(A2). This allows the following natural composition oper-
ation: if ψ ∈ Bβ(A2; M(A3)) for another C∗-algebra A3 then ψ ◦ϕ is defined to be
˜ψ ◦ϕ. A map ϕ ∈ Bβ(A1; M(A2)) is called preunital if its strict extension is unital.
Thus, for *-homomorphic maps, preunital is equivalent to nondegenerate [14].

Every completely bounded map from a C∗-algebra to the algebra of all bounded
operators on a Hilbert space is automatically strict, when the latter is viewed as
the multiplier algebra of the algebra of compact operators (see [19, Section 2]).
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1.2. MATRIX SPACES

For an operator space V in B(H;K) and full operator space B = B(h;k), the (h,k)-
matrix space over V, denoted V⊗M B, is the following operator space:

{A ∈ B(H⊗h,K⊗k) : ∀ω∈B∗ (idB(H;K) ⊗ω)(A)∈V}.
It lies between V⊗ B and V

uw ⊗ B and is equal to the latter when V is ultrawea-
kly closed. For any map ϕ∈C B(V1;V2), between operator spaces, the map ϕ⊗ idB

extends uniquely to a completely bounded map ϕ⊗M idB :V1 ⊗M B →V2 ⊗M B [20].
This construction is compatible with strict tensor products and strict extension, as
is shown in Section 1 of [19].

1.3. χ -STRUCTURE MAPS

Let (A, χ) be a C∗-algebra with character. A χ -structure map is a linear map ϕ :
A→ B(̂h), for some Hilbert space h, satisfying

ϕ(a∗b)=ϕ(a)∗χ(b)+χ(a)∗ϕ(b)+ϕ(a)∗�QSϕ(b),

in which �QS is given by (1.1). The following automatic implementability result is
key ([18, Theorem A6] and [19]).

THEOREM 1.1. Let (A, χ) be a C∗-algebra with character and let ϕ be a linear
map A→ B(̂h), for some Hilbert space h. Then the following are equivalent:

(i) ϕ is a χ -structure map.
(ii) ϕ is implemented by a pair (π, ξ) consisting of a *-homomorphism π :A→ B(h)

and vector ξ ∈h, that is ϕ has block matrix form

Z∗ν(·)Z where Z := [|ξ 〉 Ih
]

and ν :=π − ιh ◦χ. (1.2)

Moreover, if ϕ is a χ -structure map with such a block matrix form then it is neces-
sarily strict, and π is nondegenerate if and only if ϕ̃(1)=0.

1.4. MULTIPLIER C∗- BIALGEBRAS

A (multiplier) C∗-bialgebra is a C∗-algebra B with coproduct, that is a nondegen-
erate *-homomorphism � :B→ M(B⊗B) satisfying the coassociativity conditions

(idB ⊗�)◦�= (�⊗ idB)◦�.
A counit for (B,�) is a character ε on B satisfying the counital property:

(idB ⊗ε)◦�= (ε⊗ idB)◦�= idB .

Examples of counital C∗-bialgebras include all locally compact quantum groups in
the universal setting [13] – in particular, the coamenable locally compact quantum
groups [4].
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Let B be a C∗-bialgebra. The convolute of maps φ1 ∈ Lin C Pβ(B; M(A1)) and
φ2 ∈ Lin C Pβ(B; M(A2)), for C∗-algebras A1 and A2, is defined as the following
composition of strict maps:

φ1 �φ2 = (φ1 ⊗φ2)◦�∈Lin C Pβ(B; M(A1 ⊗A2));
the same notation is used for its strict extension. The convolution operation is eas-
ily seen to be associative. Moreover, by automatic strictness, and the decomposabil-
ity property:

C B(B; B(h))=Lin C P(B; B(h)), for any Hilbert space h;
it follows that any maps ϕ1 ∈ C B(B; B(h1)) and ϕ2 ∈ C B(B; B(h2)), for Hilbert
spaces h1 and h2, may be convolved:

ϕ1 �ϕ2 ∈C B(B; B(h1 ⊗h2)). (1.3)

1.5. QUANTUM STOCHASTIC CONVOLUTION COCYCLES

We now fix, for the rest of the paper, a complex Hilbert space k referred to as the
noise dimension space and a counital C∗-bialgebra B.

For a subinterval J of R+, let FJ denote the symmetric Fock space over L2(J ;k)
and write IJ for the identity operator on FJ and F for F[0,∞[. Also let E denote
the linear span of {ε(g) : g ∈ L2(R+;k)}, where ε(g) denotes the exponential vec-
tor

(

(n!)− 1
2 g⊗n

)

n≥0 in F . Thus 〈ε( f ′), ε( f )〉=exp〈 f ′, f 〉 ( f ′, f ∈ L2(J ;k)) and, for
0 ≤ r ≤ t , the natural unitary operator F →F[0,r [ ⊗F[r,t[ ⊗F[t,∞[ is determined by
the prescription ε(g) �→ ε(g|[0,r [)⊗ ε(g|[r,t[)⊗ ε(g|[t,∞[) (g ∈ L2(R+;k)) [15,23].

For ϕ∈C B(B; B(̂k)), the coalgebraic QS differential equation

dlt = lt �d�ϕ(t), l0 = ιF ◦ ε,
has a unique form solution, denoted lϕ ; it is actually a strong solution. The pro-
cess lϕ is a QS convolution cocycle on B; moreover, conversely any Markov-regu-
lar, completely positive, contractive, QS convolution cocycle on B is of the form lϕ

for a unique ϕ ∈C B(B; B(̂k)). For completely bounded processes the cocycle rela-
tion reads as follows (after some natural identifications are made):

ls+t = ls � (σs ◦ lt ), l0 = ιF ◦ ε, s, t ∈R+,

where (σs)s≥0 is the semigroup of right shifts on B(F). Markov regularity means
that each of the associated convolution semigroups of the cocycle is norm continu-
ous. In this situation, the map ϕ is referred to as the stochastic generator of the QS
convolution cocycle. A QS convolution cocycle l is said to be completely positive,
preunital, or *-homomorphic, if each lt has that property. The form of the gener-
ators of such cocycles is characterised in Theorem 5.2 of [19].
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2. Approximation by Discrete Evolutions

We now show that any Markov-regular, completely positive, contractive QS convo-
lution cocycle on B may be approximated in a strong sense by discrete completely
positive evolutions, and that the discrete evolutions may be chosen to be *-homo-
morphic and/or preunital, if the cocycle is.

Belton’s condition [6] for discrete approximation of standard Markov-regular
QS cocycles [15] nicely translates to the convolution context using the techniques
developed in [19]. We show this first. Denote by �

(h)
n (h > 0,n ∈ N) the injective

*-homomorphism

B(̂k⊗n)= B(̂k)⊗n → B(F[0,hn[)⊗ I[hn,∞[ =
(

⊗n

j=1
B(F[( j−1)h, jh[)

)

⊗ I[hn,∞[

arising from the discretisation of Fock space [2,5]. Thus

�(h)n : A �→ J (h)n AJ (h)∗n ⊗ I[hn,∞[

where

J (h)n :=
n

⊗

j=1

J (h)n, j , for the isometries

J (h)n, j :̂k �→F[( j−1)h, jh[,
(

z

c

)

�→ (z,h−1/2c[( j−1)h, jh[,0,0, . . .).

Also write �(h)n,ε for the completely bounded map

�(h)n (·)|ε〉 : B(̂k⊗n)→|F〉, where h>0,n ∈N and ε∈E . (2.1)

For a map � ∈ C B
(

V;V ⊗M B(̂k)
)

, in which V is a concrete operator space, its
composition iterates (�•n)n∈Z+ are defined recursively by

�•0 := idV, �•n := (�•(n−1)⊗M idB(̂k))◦� ∈C B(V;V⊗M B(̂k⊗n)), n ∈N.

Similarly, for a map ψ ∈C B(B; B(̂k)), its convolution iterates (ψ�n)n∈Z+ are defined
by

ψ�0 := ε, ψ�n =ψ�(n−1) �ψ ∈C B(B; B(̂k⊗n)) (n ∈N).

As usual we are viewing B(̂k⊗n) as the multiplier algebra of K (̂k⊗n) here, and
invoking the remark containing (1.3), to ensure meaning for the above convolu-
tions.

We need the following block matrix operators, on a Hilbert space of the
form ̂H:

Sh :=
[

h−1/2

IH

]

, h>0,

and write �h for the map X �→ Sh XSh on B(̂H). Such conjugations provide the
correct scaling for quantum random-walk approximation [16].
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THEOREM 2.1. Let ϕ ∈ C B(B; B(̂k)). Suppose that there is a family of maps
(ψ(h))0<h<H in C B(B; B(̂k)) for some H >0, satisfying

∥

∥ϕ−�h ◦ (ψ(h)− ι̂k ◦ ε)‖cb →0 as h →0.

Then the convolution iterates (ψ(h)n := (ψ(h))�n)n∈Z+ satisfy

sup
t∈[0,T ]

‖lϕt,ε−�(h)[t/h],ε ◦ψ(h)[t/h]‖cb →0 as h →0 (T ∈R+, ε∈E),

where lϕt,ε := lϕt (·)|ε〉∈C B(B; |F〉) and �(h)[t/h],ε is given by (2.1).

Proof. Denote the enveloping von Neumann algebra of B by B and let φ and
�(h) in C Bσ (B; B(̂k)) and ε ∈ B∗ denote, respectively, the normal extensions of
(id ⊗ϕ) ◦� and (id ⊗ψ(h)) ◦�, and the counit of B. It follows from [19] (specif-
ically, Proposition 2.1 and remarks after Theorem 1.2) that the maps transforming
ϕ into φ and ψ(h) into �(h) are complete isometries. Therefore

‖(idB ⊗�h)◦ (�(h)− ι̂k)−φ‖cb =‖�h ◦ (ψ(h)− ι̂k ◦ ε)−ϕ‖cb,

which tends to 0 as h →0 by assumption. Therefore, by Theorem 7.6 of [6],

sup
t∈[0,T ]

‖(idB ⊗�(h)[t/h],ε)◦�(h)[t/h] − kφt,ε‖cb →0 as h →0,

where �(h)n := (�(h))•n, kφ denotes the ‘standard’ QS cocycle generated by φ, that
is, the unique weakly regular weak solution of the QS differential equation

dkt = kt ◦d�φ(t), k0 = ιF
and kφt,ε :=kφt (·) I ⊗|ε〉∈C Bσ (B;B⊗|F〉) (see [15]). It follows from Section 4 of [19]
that lϕt,ε = l

ϕ

t,ε|B where l
ϕ

t,ε = (ε⊗ id|F〉)◦ kφt,ε (t ∈R+, ε∈E). The result therefore fol-
lows from the easily checked identity (ε⊗ id)◦�(h)n |B =ψ(h)n (n ∈Z+).

Remark. Multiplicativity of the coproduct is not used in the above proof; the
proper hypothesis on B is that it be a multiplier C∗-hyperbialgebra (see [19, Sec-
tion 2]).

For the next two propositions coproducts play no role.

PROPOSITION 2.2. Let (A, χ) be a C∗-algebra with character and let ϕ :A→ B(̂h)
be a χ -structure map. Letting (π, ξ) be an implementing pair for ϕ (in the sense of
Theorem 1.1), set h(ξ) equal to ‖ξ‖−2 (or ∞ if ξ =0) and, for 0<h<h(ξ), define

U (h)
ξ :=

[

ch,ξ −s∗
h,ξ

sh,ξ ch,ξ Qξ + Q⊥
ξ

]

∈ B(̂h),
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where

sh,ξ :=h1/2|ξ 〉, ch,ξ :=
√

1− s∗
h,ξ sh,ξ =

√

1−h‖ξ‖2 and Qξ := PCξ .

Then the following hold.

(a) Each U (h)
ξ is a unitary operator on ̂h.

(b) The family of *-representations

π̂
(h)
ξ :A→ B(̂h), a �→U (h)∗

ξ (χ⊕π)(a)U (h)
ξ (0<h<h(ξ))

satisfies

ϕ−�h ◦ (π̂ (h)ξ − ι̂h ◦χ)= h

1+ ch,ξ
ϕ1 − h2

(1+ ch,ξ )2
ϕ2 (2.2)

for some completely bounded maps ϕ1, ϕ2 :A→ B(̂h) which are independent of h.
(c) Each *-representation π̂ (h)ξ is nondegenerate if (and only if ) π is.

Proof. For the proof, drop the subscript ξ from Q, c and s, and let 0<h<h(ξ).
Thus

Q = Qξ , ch = ch,ξ , sh = sh,ξ and dh := ch −1∈[0,1].
(a) This is evident from the identities

c∗
h = ch, c2

h + s∗
h sh =1, s∗

h Q⊥ =0 and shs∗
h = (1− c2

h)Q.

(b) Set ν=π − ιh ◦χ so that ϕ has block matrix form (1.2), note the identities

dh = −h

1+ ch
‖ξ‖2, ‖ξ‖2 Q =|ξ 〉〈ξ |, ch Q + Q⊥ =dh Q + Ih,

and define the operators X, Z ∈ B(̂h;h) by

X :=‖ξ‖2 [

0 Q
]

and Z := [|ξ 〉 Ih
]

.

Then we have

�h(π̂
(h)
ξ (a)−χ(a) Îh)

=ShU (h)∗
ξ

[

0
ν(a)

]

U (h)
ξ Sh

=ϕ(a)+dh

[

0
Q

]

ν(a)Z +dh Z∗ν(a)
[

0 Q
]+d2

h

[

0
Q

]

ν(a)
[

0 Q
]

=ϕ(a)− h

1+ ch
(X∗ν(a)Z + Z∗ν(a)X)+ h2

(1+ ch)2
X∗ν(a)X,

so (b) holds with

ϕ1 := Z∗ν(·)X + X∗ν(·)Z and ϕ2 := X∗ν(·)X. (2.3)
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(c) This is evident from the unitarity of each U (h)
ξ and the fact that χ is a char-

acter.

Remarks. (i) Both U (h)
ξ and π̂

(h)
ξ are norm continuous in h; they converge to Îh

and χ⊕π , respectively, as h →0.
(ii) Consider the simplest class of χ -structure map, namely ϕ=0⊕ν, where ν=

π − ιh ◦χ for a *-homomorphism π :A→ B(h). In this case ξ = 0 so that U (h)
ξ = I

and

π̂
(h)
ξ =χ⊕π =ϕ+ ι̂h (h>0).

(iii) In general, the fact that π̂ (h)ξ (a) takes the form
[

χ(a)+hγ (a) ∗∗ ∗
]

(a ∈A) where
γ :=ωξ ◦ν, reveals the vector-state realisation

ωe(0) ◦ π̂ (h)ξ =ωe(h,ξ) ◦ (χ⊕π)
for the state

χ +hγ = (1−h‖ξ‖2)χ +h‖ξ‖2ωξ ′ ◦π (0<h<h(ξ)),

where e(0) := (1
0

)∈̂h,

e(h, ξ) :=U (h)
ξ e(0)=

(

√

1−h‖ξ‖2

h1/2ξ

)

∈̂h and ξ ′ :=
{ ‖ξ‖−1ξ if ξ �=0

0 if ξ =0.

Indeed, finding such a representation was the strategy of proof in [11].
(iv) This remark will be used in the proof of Theorem 2.4. Suppose that (instead

of ϕ being a χ -structure map) there is a nondegenerate representation π : A →
B(H), vector ξ ∈H and isometry D ∈ B(h;H) such that ϕ is given by

̂D∗Z∗ν(·)Z ̂D, where ̂D:=diag
[

1 D
]

, Z :=[|ξ 〉 IH
]

and ν:=π − ιH ◦χ.
(2.4)

Then replacing the unitaries U (h)
ξ by the isometries V (h)

ξ,D :=U (h)
ξ

̂D ∈ B(̂h;̂H) in the
above proof yields a family of completely positive preunital maps

V (h)∗
ξ,D (χ⊕π)(·)V (h)

ξ,D :A→ B(̂h) (0<h<h(ξ))

satisfying (2.2) with V (h)
ξ,D in place of U (h)

ξ and ̂D∗ϕ′
i (·)̂D in place of ϕi , where ϕ′

i ∈
C B(A; B(H)) (i =1,2) is given by (2.3) but with X, Z ∈ B(̂H;H) now.

PROPOSITION 2.3. Let (A, χ) be a C∗-algebra with character and let ϕ ∈
C B(A; B(̂k)). Suppose that ϕ(1)≤0 and ϕ is expressible in the form

ϕ1 −ϕ2 where ϕ1 ∈C P(A; B(̂k)) and ϕ2=χ(·)(�QS+|ζ 〉〈e(0)|+|e(0)〉〈ζ |),
(2.5)



QUANTUM RANDOM WALK APPROXIMATION 773

for a vector ζ ∈̂k, where e(0) := (1
0

)∈̂k. Then there is a family of completely positive
contractions (φ(h) :A→ B(̂k))0<h<H for some H >0 such that

‖ϕ−�h ◦ (φ(h)− ι̂k ◦χ)‖cb →0 as h →0. (2.6)

Proof. It follows from Proposition 4.3 and Theorem 4.4 of [26], and their proofs,
that there is a Hilbert space h containing k and a χ -structure map θ : A → B(̂h)
such that ϕ is the compression of θ to B(̂k). The family of *-homomorphisms
(π̂

(h)
ξ :A→ B(̂k))0<h<h(ξ) defined in Proposition 2.2 satisfies

‖θ −�h ◦ (π̂ (h)ξ − ι̂h ◦χ)‖cb →0 as h →0.

It follows that (2.6) holds for the compressions φ(h) of π̂ (h)ξ to B(̂k), which are
manifestly completely positive and contractive.

Combining the above results we obtain the following discrete approximation the-
orem for QS convolution cocycles.

THEOREM 2.4. Let l be a Markov-regular, completely positive, contractive quan-
tum stochastic convolution cocycle on a counital C∗-bialgebra B, and let k be its
noise dimension space. Then the following hold:

(a) There is a family of completely positive contractions (ψ(h) :B→ B(̂k))0<h<H for
some H >0, such that the convolution iterates (ψ(h)n := (ψ(h))�n)n∈Z+ satisfy

sup
t∈[0,T ]

‖lt,ε−�(h)[t/h],ε ◦ψ(h)[t/h]‖cb →0 as h →0 (T ∈R+, ε∈E),

where again lt,ε := lt (·)|ε〉∈C B(B; |F〉) and �(h)[t/h],ε is given by (2.1).
(b) If l is *-homomorphic, and/or preunital, then each ψ(h) may be chosen to be so

too.

Proof. By Theorem 5.2 (a) of [19], we know that l = lϕ for some map ϕ ∈
C B(B; B(̂k)) which has a decomposition of the form (2.5), with χ = ε. The first
part therefore follows from Proposition 2.3 and Theorem 2.1. If l is preunital then
ϕ may be expressed in the form (2.4) and so, by the remark containing (2.4), it
follows that the completely positive maps ψ(h) may be chosen to be preunital.

Now suppose that l is *-homomorphic. Then, by Theorem 5.2 (c) of [19], ϕ is an
ε-structure map and so, by Theorem 1.1, ϕ has an implementing pair (π, ξ) with π
nondegenerate if l is. It therefore follows from Proposition 2.2 that the maps ψ(h)

may be chosen to be *-homomorphic—and also nondegenerate if the cocycle l is
nondegenerate. This completes the proof.

We conclude by restating part of this result in the language of quantum Lévy
processes.
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COROLLARY 2.5. Every Markov-regular quantum Lévy process on a multiplier
C∗-bialgebra is a limit, in the pointwise-strong operator topology, of a sequence of
quantum random walks.

Proof. This follows from Theorem 2.4 since every Markov-regular quantum Lévy
process is equivalent to a Fock space quantum Lévy process, by Corollary 6.2 of
[19].
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