20 research outputs found

    Age related changes in skeletal muscle

    Get PDF

    Age related changes in skeletal muscle

    Get PDF

    Re-sequencing of the APOAI promoter region and the genetic association of the -75G > A polymorphism with increased cholesterol and low density lipoprotein levels among a sample of the Kuwaiti population

    Get PDF
    BACKGROUND: APOAI, a member of the APOAI/CIII/IV/V gene cluster on chromosome 11q23-24, encodes a major protein component of HDL that has been associated with serum lipid levels. The aim of this study was to determine the genetic association of polymorphisms in the APOAI promoter region with plasma lipid levels in a cohort of healthy Kuwaiti volunteers. METHODS: A 435 bp region of the APOAI promoter was analyzed by re-sequencing in 549 Kuwaiti samples. DNA was extracted from blood taken from 549 healthy Kuwaiti volunteers who had fasted for the previous 12 h. Univariate and multivariate analysis was used to determine allele association with serum lipid levels. RESULTS: The target sequence included a partial segment of the promoter region, 5’UTR and exon 1 located between nucleotides −141 to +294 upstream of the APOAI gene on chromosome 11. No novel single nucleotide polymorphisms (SNPs) were observed. The sequences obtained were deposited with the NCBI GenBank with accession number [GenBank: JX438706]. The allelic frequencies for the three SNPs were as follows: APOAI rs670G = 0.807; rs5069C = 0.964; rs1799837G = 0.997 and found to be in HWE. A significant association (p < 0.05) was observed for the APOAI rs670 polymorphism with increased serum LDL-C. Multivariate analysis showed that APOAI rs670 was an independent predictive factor when controlling for age, sex and BMI for both LDL-C (OR: 1.66, p = 0.014) and TC (OR: 1.77, p = 0.006) levels. CONCLUSION: This study is the first to report sequence analysis of the APOAI promoter in an Arab population. The unexpected positive association found between the APOAI rs670 polymorphism and increased levels of LDL-C and TC may be due to linkage disequilibrium with other polymorphisms in candidate and neighboring genes known to be associated with lipid metabolism and transport

    Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary

    Get PDF
    Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species’ range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the “restocking from the wild” hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments

    Apolipoprotein E Genotyping Among the Healthy Kuwaiti Population

    No full text
    Apolipoproteins (lipid-free) are lipid-binding proteins that circulate in the plasma of human blood and are responsible for the clearance of lipoproteins. Apolipoprotein E (ApoE) is one of the several classes of this protein family. It acts as a ligand for the low-density lipid (LDL) receptors and is important for the clearance of very low-density lipid (VLDL) and chylomicron remnants. The APOE gene locus is polymorphic, with three major known alleles, APOE*3, *4, and *2. We investigated the distribution of the allele frequency of the APOE gene locus and describe here the genetic variation in four Kuwaiti subpopulations: Arab origin (Arabian peninsula), Arab Bedouin tribes, Iranian origin, and the heterogeneous population. We also describe the use of Spreadex gels in resolving the amplified and digested products of the APOE gene locus. DNA was extracted from whole blood and subjected to PCR and then to RFLP analysis. Allele and genotype frequencies were estimated for the total population and for each subpopulation. Statistical analysis showed no difference in the allele frequencies between the four groups. The frequency of APOE*3 in the Kuwaiti population was highest (88.4%) followed by the frequency of APOE*4 (6.5%) and APOE*2 (5.1%). The genotype and allele frequencies obtained for the Kuwaiti population fell within the reported worldwide distribution for the APOE gene locus. Moreover, the results obtained in this study showed no statistical difference ( p \u3e 0.05) between the APOE allele and genotype frequencies between the subgroups for all six genotypes and three alleles, supporting the assumption of admixture in the Kuwaiti population and that the obtained frequencies were in Hardy-Weinberg equilibrium. Finally, we found that the distribution of the APOE alleles in Kuwait differs somewhat from those reported in other Arab populations, suggesting that the Arabs originating from the Arabian peninsula are different from those of Lebanon, Morocco, and Sudan

    A novel <i>LPL</i> intronic variant: g.18704C>A identified by re-sequencing Kuwaiti Arab samples is associated with high-density lipoprotein, very low-density lipoprotein and triglyceride lipid levels - Fig 4

    No full text
    <p>Comparison of the frequencies of rare (a) and common (b) variants identified at the <i>LPL</i> gene locus in the Kuwaiti Arab samples (n = 100), non-Hispanic whites (n = 95; Pirim et al., 2014) and American Africans (n = 95; Pirim et al., 2015). The variants identified in this study are shown based on their location across the 30Kb gene. The minor allele frequencies are based on gene build 89 and genome assembly GRCh38 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192617#pone.0192617.ref026" target="_blank">26</a>].</p

    Multivariate analysis using linear regression to predict the effect of KUA LPL-27 genotypes ss2137497749 on HDL, TG and VLDL levels in the Kuwaiti cohort (n = 702).

    No full text
    <p>Multivariate analysis using linear regression to predict the effect of KUA LPL-27 genotypes <a href="https://www.ncbi.nlm.nih.gov/SNP/snp_ss.cgi?ss=ss2137497750" target="_blank">ss2137497749</a> on HDL, TG and VLDL levels in the Kuwaiti cohort (n = 702).</p
    corecore