532 research outputs found

    Numerical Modeling of Melting Process of Thin Metal Films Subjected to the Short Laser Pulse

    Get PDF
    Thin metal film subjected to a short-pulse laser heating is considered. The parabolic two-temperature model describing the temporal and spatial evolution of the lattice and electrons temperatures is discussed and the melting process of thin layer is taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown

    Temperature and time-dependent effects of delayed blood processing on oxylipin concentrations in human plasma.

    Get PDF
    BACKGROUND:Oxidized derivatives of polyunsaturated fatty acids, collectively known as oxylipins, are labile bioactive mediators with diverse roles in human physiology and pathology. Oxylipins are increasingly being measured in plasma collected in clinical studies to investigate biological mechanisms and as pharmacodynamic biomarkers for nutrient-based and drug-based interventions. Whole blood is generally stored either on ice or at room temperature prior to processing. However, the potential impacts of delays in processing, and of temperature prior to processing, on oxylipin concentrations are incompletely understood. OBJECTIVE:To evaluate the effects of delayed processing of blood samples in a timeframe that is typical of a clinical laboratory setting, using typical storage temperatures, on concentrations of representative unesterified oxylipins measured by liquid chromatography-tandem mass spectrometry. DESIGN:Whole blood (drawn on three separate occasions from a single person) was collected into 5 mL purple-top potassium-EDTA tubes and stored for 0, 10, 20, 30, 60 or 120 min at room temperature or on wet ice, followed by centrifugation at 4 °C for 10 min with plasma collection. Each sample was run in duplicate, therefore there were six tubes and up to six data points at each time point for each oxylipin at each condition (ice/room temperature). Representative oxylipins derived from arachidonic acid, docosahexaenoic acid, and linoleic acid were quantified by liquid chromatography tandem mass spectrometry. Longitudinal models were used to estimate differences between temperature groups 2 h after blood draw. RESULTS:We found that most oxylipins measured in human plasma in traditional potassium-EDTA tubes are reasonably stable when stored on ice for up to 2 h prior to processing, with little evidence of auto-oxidation in either condition. By contrast, in whole blood stored at room temperature, substantial time-dependent increases in the 12-lipoxygenase-derived (12-HETE, 14-HDHA) and platelet-derived (thromboxane B2) oxylipins were observed. CONCLUSION:These findings suggest that certain plasma oxylipins can be measured with reasonable accuracy despite delayed processing for up to 2 h when blood is stored on ice prior to centrifugation. 12-Lipoxygenase- and platelet-derived oxylipins may be particularly sensitive to post-collection artifact with delayed processing at room temperature. Future studies are needed to determine impacts of duration and temperature of centrifugation on oxylipin concentrations

    Telemetric measurement of core temperature in pharmacological research: Validity and reliability

    Full text link
    1. The authors present data establishing the reliability and validity of a method for telemetrically measuring core temperature.2. The method is designed to be of particular utility to psychobiological researchers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28902/1/0000739.pd

    Chronic treatment with amitriptyline produces supersensitivity to nicotine,

    Full text link
    The authors used a thermoregulation paradigm to evaluate effects of amitriptyline (AMI) on the sensitivity of a nicotinic mechanism involved in the regulation of core temperature in rats. Treatment with this tricyclic was associated with a significant increase in the hypothermie response to nicotine. Supersensitivity persisted for a minimum of 7.5 days following the last dose of AMI, and a significant proportion of animals displayed increased sensitivity after 14.5 days of abstinence. Implications for the mechanism of action of AMI are highlighted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27428/1/0000466.pd

    Ultrafast Charge Separation in Bilayer WS2/Graphene Heterostructure Revealed by Time- and Angle-Resolved Photoemission Spectroscopy

    Get PDF
    Efficient light harvesting devices need to combine strong absorption in the visible spectral range with efficient ultrafast charge separation. These features commonly occur in novel ultimately thin van der Waals heterostructures with type II band alignment. Recently, ultrafast charge separation was also observed in monolayer WS2/graphene heterostructures with type I band alignment. Here we use time- and angle-resolved photoemission spectroscopy to show that ultrafast charge separation also occurs at the interface between bilayer WS2 and graphene indicating that the indirect band gap of bilayer WS2 does not affect the charge transfer to the graphene layer. The microscopic insights gained in the present study will turn out to be useful for the design of novel optoelectronic devices

    Conceptual Challenges for Advancing the Socio-Technical Underpinnings of Health Informatics

    Get PDF
    This discussion paper considers the adoption of socio-technical perspectives and their theoretical and practical influence within the discipline of health informatics. The paper highlights the paucity of discussion of the philosophy, theory and concepts of socio-technical perspectives within health informatics. Instead of a solid theoretical base from which to describe, study and understand human-information technology interactions we continue to have fragmented, unelaborated understandings. This has resulted in a continuing focus on technical system performance and increasingly managerial outputs to the detriment of social and technical systems analysis. It has also limited critical analyses and the adaptation of socio-technical approaches beyond the immediate environment to the broader social systems of contemporary society, an expansion which is increasingly mandated in today’s complex health environment

    Momentum-resolved linear dichroism in bilayer MoS2

    Get PDF
    In solid state photoemission experiments it is possible to extract information about the symmetry and orbital character of the electronic wave functions via the photoemission selection rules that shape the measured intensity. This approach can be expanded in a pump-probe experiment where the intensity contains additional information about interband excitations induced by an ultrafast laser pulse with tunable polarization. Here, we find an unexpected strong linear dichroism effect (up to 42.4%) in the conduction band of bilayer MoS2, when measuring energy- A nd momentum-resolved snapshots of excited electrons by time- A nd angle-resolved photoemission spectroscopy. We model the polarization-dependent photoemission intensity in the transiently populated conduction band using the semiconductor Bloch equations. Our theoretical analysis reveals a strongly anisotropic momentum dependence of the optical excitations due to intralayer single-particle hopping, which explains the observed linear dichroism
    corecore