17 research outputs found
Focused beam dosimetry of short VHEE bunches
Accelerators driven by 10s TW-class lasers can produce electron bunches with femtosecond-scale duration and energy of 100s of MeV. A potential application of such short bunches is high-dose rate radiotherapy, which could transition to FLASH radiotherapy if a sufficiently large dose is delivered in a single shot. Here we present Monte Carlo simulations to study the bunch length evolution of an electron beam propagating in a water phantom. We show that for electron energies above 100 MeV the bunch lengthens to 1--10 ps duration after interaction with a 30 cm long water phantom, both for a collimated and weakly focused geometry. The corresponding dose rates are on the order of 200 Gy/s per primary electron, much higher than in conventional radiotherapy
The SCAPA LWFA beamline
The Scottish Centre for the Application of Plasma based Accelerators situated at the University of Strathclyde in Glasgow, UK, is coming online. It comprises three radiation shielded concrete bunkers housing a total of seven beamlines and interaction chambers, each driven by one of a pair of high power Ti sapphire laser systems a 350 TW and a 40 TW
Design of a double dipole electron spectrometer
With the increase of laser power at facilities reaching petawatt-level, there is a need for accurate electron beam diagnostics of the laser wakefield accelerator (LWFA), which are becoming important tools for a wide range of applications including high field physics. Electrons in the range of several 10 0s of GeV are expected at these power levels. Precise diagnostic systems are required to enable applications such as advanced radiation sources. Accurate measurement of the energy spread of electron beams will help pave the way towards LWFA based free-electron lasers and plasma based coherent radiation sources. We propose an innovative double dipole spectrometer suitable for characterizing bunches produced using a petawatt class laser
Vacuum ultraviolet coherent undulator radiation from attosecond electron bunches
Attosecond duration relativistic electron bunches travelling through an undulator can generate brilliant coherent radiation in the visible to vacuum ultraviolet spectral range. We present comprehensive numerical simulations to study the properties of coherent emission for a wide range of electron energies and bunch durations, including space-charge effects. These demonstrate that electron bunches with r.m.s. duration of 50 as, nominal charge of 0.1 pC and energy range of 100â250 MeV produce 109 coherent photons per pulse in the 100â600 nm wavelength range. We show that this can be enhanced substantially by self-compressing negatively chirped 100 pC bunches in the undulator to produce 1014 coherent photons with pulse duration of 0.5â3 fs
Characterisation of a laser plasma accelerator x-ray source size using a Kirkpatrick-Baez microscope
Laser plasma accelerators are highly versatile and are sources of both radiation and particle beams, with unique properties. The Scottish Centre for Application based Plasma Accelerators (SCAPA) 40 TW and 350 TW laser at the University of Strathclyde has been used to produce both soft and hard x-rays using a laser wakefield accelerator (LWFA). The inherent characteristics of these femtosecond duration pulsed x-rays make them ideal for probing matter and ultrafast imaging applications. To support the development of applications of laser plasma accelerators at the SCAPA facility an adjustable Kirkpatrick-Baez x-ray microscope has been designed to focus 50 eV - 10 KeV x-rays. It is now possible to produce high quality at silicon wafers substrates that can be used for x-ray optics. Platinum-coated (40 nm) silicon wafers have been used in the KB instrument to image the LWFA x-ray source. We simulate the source distribution as part of an investigation to determine the x-ray source size and therefore its transverse coherence and ultimately the peak brilliance. The OASYS SHAODOW-OUI raytracing and wave propagation code has been used to simulate the imaging setup and determine instrument resolution
AccĂ©lĂ©ration laser-plasma : mise en forme de faisceaux dâĂ©lectrons pour les applications
Laser plasma acceleration (LPA) comes from the nonlinear interaction between an intense laser beam (â10Âčâž W/cmÂČ) and a gas target. The plasma wave which is generated can, trap and accelerate electrons to very high energies due to large accelerating fields (â 50 GV/m). Numerous studies have been done on this promising process among our scientific community aiming at understanding the basic mechanisms involved. As a second step, we now try tries to improve the properties of the source (energy, divergence, reproducibilityâŠ).Such ultra-compact electronic sources can be used for various applications. Among them, high energy physics for which a specific scheme was designed, based on the multi-stage acceleration. The scheme relies on the addition of successive accelerating modules to increase the effective accelerating length and therefore the final electron energy. In its basic version, a first stage (injector) delivers an electron beam at moderate energy including a high charge. This beam is then further accelerated to high energy through a second stage (accelerator). This thesis is part of preliminary studies performed to prepare the future 2-stages laser plasma accelerator that will be developed on platform CILEX with APOLLON 10 PW laser.In this context, a new target has been designed and characterized with the UHI100 laser. Then the electron beam properties have been adjusted by optical shaping of the laser generating the plasma wave, and also by magnetic shaping.The electron beam, magnetically shaped, has been used for a specific application devoted to the set-up of a new dosimetric diagnostic, dedicated to the measurement of high dose rate delivered by these electrons from LPA.L'accĂ©lĂ©ration laser plasma (ALP) est le produit de l'interaction non linĂ©aire entre un faisceau laser intense (â10Âčâž W/cmÂČ) et une cible gazeuse. Sous certaines conditions, lâonde plasma gĂ©nĂ©rĂ©e peut piĂ©ger et accĂ©lĂ©rer des Ă©lectrons jusquâĂ des Ă©nergies trĂšs importantes grĂące Ă des champs accĂ©lĂ©rateurs Ă©levĂ©s (â 50 GV/m). Ce processus trĂšs prometteur fait l'objet de nombreux travaux au sein de la communautĂ©, qui, aprĂšs avoir identifiĂ© les mĂ©canismes de base, cherche aujourdâhui Ă amĂ©liorer les propriĂ©tĂ©s de la source (Ă©nergie, divergence, reproductibilitĂ©...).Les applications de ces faisceaux d'Ă©lectrons issus de sources ultra-compactes sont variĂ©es. Parmi celles-ci, la physique des hautes Ă©nergies pour laquelle a Ă©tĂ© conçu le schĂ©ma d'accĂ©lĂ©ration multi-Ă©tages. Il sâagit dâun concept basĂ© sur la succession dâĂ©tages accĂ©lĂ©rateurs pour rĂ©pondre Ă la problĂ©matique de lâaugmentation de la longueur dâaccĂ©lĂ©ration en vue dâaugmenter lâĂ©nergie des Ă©lectrons. Dans sa version de base, un premier Ă©tage (injecteur) fournit un faisceau d'Ă©lectrons d'Ă©nergie modĂ©rĂ©e dotĂ© dâune charge trĂšs importante. Ce faisceau est alors accĂ©lĂ©rĂ© vers de plus hautes Ă©nergies dans un second Ă©tage appelĂ© accĂ©lĂ©rateur. Cette thĂšse s'inscrit dans une sĂ©rie de travaux prĂ©liminaires aux expĂ©riences d'accĂ©lĂ©ration laser-plasma double Ă©tages prĂ©vues sur la plateforme expĂ©rimentale CILEX autour du laser APOLLON 10 PW.Dans ce cadre, une nouvelle cible a Ă©tĂ© conçue et caractĂ©risĂ©e avec le laser UHI100. Les propriĂ©tĂ©s du faisceau d'Ă©lectrons ont ensuite Ă©tĂ© modifiĂ©es par mise en forme optique du faisceau laser produisant l'onde de plasma, ainsi que par mise en forme magnĂ©tique.Ce dernier dispositif nous a permis de pouvoir utiliser la source pour une application visant Ă mettre au point un systĂšme de dosimĂ©trie adaptĂ© au fort dĂ©bit de dose associĂ© aux Ă©lectrons issus de l'ALP
Laser plasma acceleration : electron beams shaping for applications
L'accĂ©lĂ©ration laser plasma (ALP) est le produit de l'interaction non linĂ©aire entre un faisceau laser intense (â10Âčâž W/cmÂČ) et une cible gazeuse. Sous certaines conditions, lâonde plasma gĂ©nĂ©rĂ©e peut piĂ©ger et accĂ©lĂ©rer des Ă©lectrons jusquâĂ des Ă©nergies trĂšs importantes grĂące Ă des champs accĂ©lĂ©rateurs Ă©levĂ©s (â 50 GV/m). Ce processus trĂšs prometteur fait l'objet de nombreux travaux au sein de la communautĂ©, qui, aprĂšs avoir identifiĂ© les mĂ©canismes de base, cherche aujourdâhui Ă amĂ©liorer les propriĂ©tĂ©s de la source (Ă©nergie, divergence, reproductibilitĂ©...).Les applications de ces faisceaux d'Ă©lectrons issus de sources ultra-compactes sont variĂ©es. Parmi celles-ci, la physique des hautes Ă©nergies pour laquelle a Ă©tĂ© conçu le schĂ©ma d'accĂ©lĂ©ration multi-Ă©tages. Il sâagit dâun concept basĂ© sur la succession dâĂ©tages accĂ©lĂ©rateurs pour rĂ©pondre Ă la problĂ©matique de lâaugmentation de la longueur dâaccĂ©lĂ©ration en vue dâaugmenter lâĂ©nergie des Ă©lectrons. Dans sa version de base, un premier Ă©tage (injecteur) fournit un faisceau d'Ă©lectrons d'Ă©nergie modĂ©rĂ©e dotĂ© dâune charge trĂšs importante. Ce faisceau est alors accĂ©lĂ©rĂ© vers de plus hautes Ă©nergies dans un second Ă©tage appelĂ© accĂ©lĂ©rateur. Cette thĂšse s'inscrit dans une sĂ©rie de travaux prĂ©liminaires aux expĂ©riences d'accĂ©lĂ©ration laser-plasma double Ă©tages prĂ©vues sur la plateforme expĂ©rimentale CILEX autour du laser APOLLON 10 PW.Dans ce cadre, une nouvelle cible a Ă©tĂ© conçue et caractĂ©risĂ©e avec le laser UHI100. Les propriĂ©tĂ©s du faisceau d'Ă©lectrons ont ensuite Ă©tĂ© modifiĂ©es par mise en forme optique du faisceau laser produisant l'onde de plasma, ainsi que par mise en forme magnĂ©tique.Ce dernier dispositif nous a permis de pouvoir utiliser la source pour une application visant Ă mettre au point un systĂšme de dosimĂ©trie adaptĂ© au fort dĂ©bit de dose associĂ© aux Ă©lectrons issus de l'ALP.Laser plasma acceleration (LPA) comes from the nonlinear interaction between an intense laser beam (â10Âčâž W/cmÂČ) and a gas target. The plasma wave which is generated can, trap and accelerate electrons to very high energies due to large accelerating fields (â 50 GV/m). Numerous studies have been done on this promising process among our scientific community aiming at understanding the basic mechanisms involved. As a second step, we now try tries to improve the properties of the source (energy, divergence, reproducibilityâŠ).Such ultra-compact electronic sources can be used for various applications. Among them, high energy physics for which a specific scheme was designed, based on the multi-stage acceleration. The scheme relies on the addition of successive accelerating modules to increase the effective accelerating length and therefore the final electron energy. In its basic version, a first stage (injector) delivers an electron beam at moderate energy including a high charge. This beam is then further accelerated to high energy through a second stage (accelerator). This thesis is part of preliminary studies performed to prepare the future 2-stages laser plasma accelerator that will be developed on platform CILEX with APOLLON 10 PW laser.In this context, a new target has been designed and characterized with the UHI100 laser. Then the electron beam properties have been adjusted by optical shaping of the laser generating the plasma wave, and also by magnetic shaping.The electron beam, magnetically shaped, has been used for a specific application devoted to the set-up of a new dosimetric diagnostic, dedicated to the measurement of high dose rate delivered by these electrons from LPA