22 research outputs found

    The burden and challenges of Neonatal Tetanus in Kilifi District, Kenya - 2004-7

    Get PDF
    Objectives: To describe the incidence of neonatal tetanus (NNT) and to describe the trends between 2004 and 2007; to show the geographical distribution of NNT in Kilifi district and to describe routine immunisation coverage, catch-up campaigns and mop-ups.Design: Retrospective studySetting: Kilifi district, Coastal KenyaSubjects: Children diagnosed with Neonatal Tetanus (NNT) attending Health facilities in the District.Results: The incidence of NNT in Kilifi increased from 0.6 in 2004 to 1.0 per 1000 live births in 2007. Over 50% of Kilifi district was a high risk area for NNT. It was a public health problem (>1 per 1000 live births) in 19/36 locations. Immunisation (TT2+) increased from 4% in 2004 to 17% in 2007 for women of childbearing age and from 22% to 98% for pregnant women in the same period. All cases of NNT were delivered at home. 83% of NNT cases had potentially infectious materials applied to their cords.Conclusions: Neonatal tetanus was an increasing problem in Kilifi district in the period 2004-2007. Immunisation coverage was low for women of childbearing age. TT immunisation data capture was a mix-up (pregnant women and women of childbearing age) at various health facilities and was a challenge to accurate estimates of TT2+ immunisation coverage

    Impact of COVID-19 on mortality in coastal Kenya: a longitudinal open cohort study

    Get PDF
    The mortality impact of COVID-19 in Africa remains controversial because most countries lack vital registration. We analysed excess mortality in Kilifi Health and Demographic Surveillance System, Kenya, using 9 years of baseline data. SARS-CoV-2 seroprevalence studies suggest most adults here were infected before May 2022. During 5 waves of COVID-19 (April 2020-May 2022) an overall excess mortality of 4.8% (95% PI 1.2%, 9.4%) concealed a significant excess (11.6%, 95% PI 5.9%, 18.9%) among older adults ( ≄ 65 years) and a deficit among children aged 1–14 years (−7.7%, 95% PI −20.9%, 6.9%). The excess mortality rate for January 2020-December 2021, age-standardised to the Kenyan population, was 27.4/100,000 person-years (95% CI 23.2-31.6). In Coastal Kenya, excess mortality during the pandemic was substantially lower than in most high-income countries but the significant excess mortality in older adults emphasizes the value of achieving high vaccine coverage in this risk group

    SARS-CoV-2 seroprevalence and implications for population immunity: Evidence from two Health and Demographic Surveillance System sites in Kenya, February-December 2022.

    Get PDF
    BACKGROUND: We sought to estimate SARS-CoV-2 antibody seroprevalence within representative samples of the Kenyan population during the third year of the COVID-19 pandemic and the second year of COVID-19 vaccine use. METHODS: We conducted cross-sectional serosurveys among randomly selected, age-stratified samples of Health and Demographic Surveillance System (HDSS) residents in Kilifi and Nairobi. Anti-spike (anti-S) immunoglobulin G (IgG) serostatus was measured using a validated in-house ELISA and antibody concentrations estimated with reference to the WHO International Standard for anti-SARS-CoV-2 immunoglobulin. RESULTS: HDSS residents were sampled in February-June 2022 (Kilifi HDSS N = 852; Nairobi Urban HDSS N = 851) and in August-December 2022 (N = 850 for both sites). Population-weighted coverage for ≄1 doses of COVID-19 vaccine were 11.1% (9.1-13.2%) among Kilifi HDSS residents by November 2022 and 34.2% (30.7-37.6%) among Nairobi Urban HDSS residents by December 2022. Population-weighted anti-S IgG seroprevalence among Kilifi HDSS residents increased from 69.1% (65.8-72.3%) by May 2022 to 77.4% (74.4-80.2%) by November 2022. Within the Nairobi Urban HDSS, seroprevalence by June 2022 was 88.5% (86.1-90.6%), comparable with seroprevalence by December 2022 (92.2%; 90.2-93.9%). For both surveys, seroprevalence was significantly lower among Kilifi HDSS residents than among Nairobi Urban HDSS residents, as were antibody concentrations (p < 0.001). CONCLUSION: More than 70% of Kilifi residents and 90% of Nairobi residents were seropositive for anti-S IgG by the end of 2022. There is a potential immunity gap in rural Kenya; implementation of interventions to improve COVID-19 vaccine uptake among sub-groups at increased risk of severe COVID-19 in rural settings is recommended

    Seroprevalence of Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 Among Healthcare Workers in Kenya.

    Get PDF
    BACKGROUND: Few studies have assessed the seroprevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among healthcare workers (HCWs) in Africa. We report findings from a survey among HCWs in 3 counties in Kenya. METHODS: We recruited 684 HCWs from Kilifi (rural), Busia (rural), and Nairobi (urban) counties. The serosurvey was conducted between 30 July and 4 December 2020. We tested for immunoglobulin G antibodies to SARS-CoV-2 spike protein, using enzyme-linked immunosorbent assay. Assay sensitivity and specificity were 92.7 (95% CI, 87.9-96.1) and 99.0% (95% CI, 98.1-99.5), respectively. We adjusted prevalence estimates, using bayesian modeling to account for assay performance. RESULTS: The crude overall seroprevalence was 19.7% (135 of 684). After adjustment for assay performance, seroprevalence was 20.8% (95% credible interval, 17.5%-24.4%). Seroprevalence varied significantly (P < .001) by site: 43.8% (95% credible interval, 35.8%-52.2%) in Nairobi, 12.6% (8.8%-17.1%) in Busia and 11.5% (7.2%-17.6%) in Kilifi. In a multivariable model controlling for age, sex, and site, professional cadre was not associated with differences in seroprevalence. CONCLUSION: These initial data demonstrate a high seroprevalence of antibodies to SARS-CoV-2 among HCWs in Kenya. There was significant variation in seroprevalence by region, but not by cadre

    Incidence and predictors of hospital readmission in children presenting with severe anaemia in Uganda and Malawi: a secondary analysis of TRACT trial data

    Get PDF
    Background: Severe anaemia (haemoglobin < 6 g/dL) is a leading cause of recurrent hospitalisation in African children. We investigated predictors of readmission in children hospitalised with severe anaemia in the TRACT trial (ISRCTN84086586) in order to identify potential future interventions. Methods: Secondary analyses of the trial examined 3894 children from Uganda and Malawi surviving a hospital episode of severe anaemia. Predictors of all-cause readmission within 180 days of discharge were identified using multivariable regression with death as a competing risk. Groups of children with similar characteristics were identified using hierarchical clustering. Results: Of the 3894 survivors 682 (18%) were readmitted; 403 (10%) had ≄2 re-admissions over 180 days. Three main causes of readmission were identified: severe anaemia (n = 456), malaria (n = 252) and haemoglobinuria/dark urine syndrome (n = 165). Overall, factors increasing risk of readmission included HIV-infection (hazard ratio 2.48 (95% CI 1.63–3.78), p < 0.001); ≄2 hospital admissions in the preceding 12 months (1.44(1.19–1.74), p < 0.001); history of transfusion (1.48(1.13–1.93), p = 0.005); and missing ≄1 trial medication dose (proxy for care quality) (1.43 (1.21–1.69), p < 0.001). Children with uncomplicated severe anaemia (Hb 4-6 g/dL and no severity features), who never received a transfusion (per trial protocol) during the initial admission had a substantially lower risk of readmission (0.67(0.47–0.96), p = 0.04). Malaria (among children with no prior history of transfusion) (0.60(0.47–0.76), p < 0.001); younger-age (1.07 (1.03–1.10) per 1 year younger, p < 0.001) and known sickle cell disease (0.62(0.46–0.82), p = 0.001) also decreased risk of readmission. For anaemia re-admissions, gross splenomegaly and enlarged spleen increased risk by 1.73(1.23–2.44) and 1.46(1.18–1.82) respectively compared to no splenomegaly. Clustering identified four groups of children with readmission rates from 14 to 20%. The cluster with the highest readmission rate was characterised by very low haemoglobin (mean 3.6 g/dL). Sickle Cell Disease (SCD) predominated in two clusters associated with chronic repeated admissions or severe, acute presentations in largely undiagnosed SCD. The final cluster had high rates of malaria (78%), severity signs and very low platelet count, consistent with acute severe malaria. Conclusions: Younger age, HIV infection and history of previous hospital admissions predicted increased risk of readmission. However, no obvious clinical factors for intervention were identified. As missing medication doses was highly predictive, attention to care related factors may be important. Trial registration: ISRCTN ISRCTN84086586. Keywords: Severe anaemia, Readmissio

    The cost‐effectiveness of prophylaxis strategies for individuals with advanced HIV starting treatment in Africa

    Get PDF
    Introduction Many HIV‐positive individuals in Africa have advanced disease when initiating antiretroviral therapy (ART) so have high risks of opportunistic infections and death. The REALITY trial found that an enhanced‐prophylaxis package including fluconazole reduced mortality by 27% in individuals starting ART with CD4 <100 cells/mm3. We investigated the cost‐effectiveness of this enhanced‐prophylaxis package versus other strategies, including using cryptococcal antigen (CrAg) testing, in individuals with CD4 <200 cells/mm3 or <100 cells/mm3 at ART initiation and all individuals regardless of CD4 count. Methods The REALITY trial enrolled from June 2013 to April 2015. A decision‐analytic model was developed to estimate the cost‐effectiveness of six management strategies in individuals initiating ART in the REALITY trial countries. Strategies included standard‐prophylaxis, enhanced‐prophylaxis, standard‐prophylaxis with fluconazole; and three CrAg testing strategies, the first stratifying individuals to enhanced‐prophylaxis (CrAg‐positive) or standard‐prophylaxis (CrAg‐negative), the second to enhanced‐prophylaxis (CrAg‐positive) or enhanced‐prophylaxis without fluconazole (CrAg‐negative) and the third to standard‐prophylaxis with fluconazole (CrAg‐positive) or without fluconazole (CrAg‐negative). The model estimated costs, life‐years and quality‐adjusted life‐years (QALY) over 48 weeks using three competing mortality risks: cryptococcal meningitis; tuberculosis, serious bacterial infection or other known cause; and unknown cause. Results Enhanced‐prophylaxis was cost‐effective at cost‐effectiveness thresholds of US300andUS300 and US500 per QALY with an incremental cost‐effectiveness ratio (ICER) of US157perQALYintheCD4<200cells/mm3populationprovidingenhanced‐prophylaxiscomponentsaresourcedatlowestavailableprices.TheICERreducedinmoreseverelyimmunosuppressedindividuals(US157 per QALY in the CD4 <200 cells/mm3 population providing enhanced‐prophylaxis components are sourced at lowest available prices. The ICER reduced in more severely immunosuppressed individuals (US113 per QALY in the CD4 <100 cells/mm3 population) and increased in all individuals regardless of CD4 count (US722perQALY).Resultsweresensitivetopricesoftheenhanced‐prophylaxiscomponents.Enhanced‐prophylaxiswasmoreeffectiveandlesscostlythanallCrAgtestingstrategiesasenhanced‐prophylaxisstillconveyedhealthgainsinCrAg‐negativepatientsandsavingsfromtargetingprophylaxisbasedonCrAgstatusdidnotcompensateforcostsofCrAgtesting.CrAgtestingstrategiesdidnotbecomecost‐effectiveunlessthepriceofCrAgtestingfellbelowUS722 per QALY). Results were sensitive to prices of the enhanced‐prophylaxis components. Enhanced‐prophylaxis was more effective and less costly than all CrAg testing strategies as enhanced‐prophylaxis still conveyed health gains in CrAg‐negative patients and savings from targeting prophylaxis based on CrAg status did not compensate for costs of CrAg testing. CrAg testing strategies did not become cost‐effective unless the price of CrAg testing fell below US2.30. Conclusions The REALITY enhanced‐prophylaxis package in individuals with advanced HIV starting ART reduces morbidity and mortality, is practical to administer and is cost‐effective. Efforts should continue to ensure that components are accessed at lowest available prices

    Late Presentation With HIV in Africa: Phenotypes, Risk, and Risk Stratification in the REALITY Trial.

    Get PDF
    This article has been accepted for publication in Clinical Infectious Diseases Published by Oxford University PressBackground: Severely immunocompromised human immunodeficiency virus (HIV)-infected individuals have high mortality shortly after starting antiretroviral therapy (ART). We investigated predictors of early mortality and "late presenter" phenotypes. Methods: The Reduction of EArly MortaLITY (REALITY) trial enrolled ART-naive adults and children ≄5 years of age with CD4 counts .1). Results: Among 1711 included participants, 203 (12%) died. Mortality was independently higher with older age; lower CD4 count, albumin, hemoglobin, and grip strength; presence of World Health Organization stage 3/4 weight loss, fever, or vomiting; and problems with mobility or self-care at baseline (all P < .04). Receiving enhanced antimicrobial prophylaxis independently reduced mortality (P = .02). Of five late-presenter phenotypes, Group 1 (n = 355) had highest mortality (25%; median CD4 count, 28 cells/”L), with high symptom burden, weight loss, poor mobility, and low albumin and hemoglobin. Group 2 (n = 394; 11% mortality; 43 cells/”L) also had weight loss, with high white cell, platelet, and neutrophil counts suggesting underlying inflammation/infection. Group 3 (n = 218; 10% mortality) had low CD4 counts (27 cells/”L), but low symptom burden and maintained fat mass. The remaining groups had 4%-6% mortality. Conclusions: Clinical and laboratory features identified groups with highest mortality following ART initiation. A screening tool could identify patients with low CD4 counts for prioritizing same-day ART initiation, enhanced prophylaxis, and intensive follow-up. Clinical Trials Registration: ISRCTN43622374.REALITY was funded by the Joint Global Health Trials Scheme (JGHTS) of the UK Department for International Development, the Wellcome Trust, and Medical Research Council (MRC) (grant number G1100693). Additional funding support was provided by the PENTA Foundation and core support to the MRC Clinical Trials Unit at University College London (grant numbers MC_UU_12023/23 and MC_UU_12023/26). Cipla Ltd, Gilead Sciences, ViiV Healthcare/GlaxoSmithKline, and Merck Sharp & Dohme donated drugs for REALITY, and ready-to-use supplementary food was purchased from Valid International. A. J. P. is funded by the Wellcome Trust (grant number 108065/Z/15/Z). J. A. B. is funded by the JGHTS (grant number MR/M007367/1). The Malawi-Liverpool–Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine (grant number 101113/Z/13/Z) and the Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Kilifi (grant number 203077/Z/16/Z) are supported by strategic awards from the Wellcome Trust, United Kingdom. Permission to publish was granted by the Director of KEMRI. This supplement was supported by funds from the Bill & Melinda Gates Foundation
    corecore