18 research outputs found

    Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae

    Get PDF
    Streptococcus agalactiae is a common human commensal and a major life-threatening pathogen in neonates. Adherence to host epithelial cells is the first critical step of the infectious process. Pili have been observed on the surface of several gram-positive bacteria including S. agalactiae. We previously characterized the pilus-encoding operon gbs1479-1474 in strain NEM316. This pilus is composed of three structural subunit proteins: Gbs1478 (PilA), Gbs1477 (PilB), and Gbs1474 (PilC), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component; PilA, the pilus associated adhesin, and PilC, are both accessory proteins incorporated into the pilus backbone. We first addressed the role of the housekeeping sortase A in pilus biogenesis and showed that it is essential for the covalent anchoring of the pilus fiber to the peptidoglycan. We next aimed at understanding the role of the pilus fiber in bacterial adherence and at resolving the paradox of an adhesive but dispensable pilus. Combining immunoblotting and electron microscopy analyses, we showed that the PilB fiber is essential for efficient PilA display on the surface of the capsulated strain NEM316. We then demonstrated that pilus integrity becomes critical for adherence to respiratory epithelial cells under flow-conditions mimicking an in vivo situation and revealing the limitations of the commonly used static adherence model. Interestingly, PilA exhibits a von Willebrand adhesion domain (VWA) found in many extracellular eucaryotic proteins. We show here that the VWA domain of PilA is essential for its adhesive function, demonstrating for the first time the functionality of a prokaryotic VWA homolog. Furthermore, the auto aggregative phenotype of NEM316 observed in standing liquid culture was strongly reduced in all three individual pilus mutants. S. agalactiae strain NEM316 was able to form biofilm in microtiter plate and, strikingly, the PilA and PilB mutants were strongly impaired in biofilm formation. Surprisingly, the VWA domain involved in adherence to epithelial cells was not required for biofilm formation

    Host–pathogen interactions in bacterial meningitis

    Get PDF

    Metagenomic shotgun sequencing of blood to identify bacteria and viruses in leukemic febrile neutropenia.

    No full text
    Despite diagnostic advances in microbiology, the etiology of neutropenic fever remains elusive in most cases. In this study, we evaluated the utility of a metagenomic shotgun sequencing based assay for detection of bacteria and viruses in blood samples of patients with febrile neutropenia. We prospectively enrolled 20 acute leukemia patients and obtained blood from these patients at three time points: 1) anytime from onset of neutropenia until before development of neutropenic fever, 2) within 24 hours of onset of neutropenic fever, 3) 5-7 days after onset of neutropenic fever. Blood samples underwent sample preparation, sequencing and analysis using the iDTECT® Dx Blood v1® platform (PathoQuest, Paris, France). Clinically relevant viruses or bacteria were detected in three cases each by metagenomic shotgun sequencing and blood cultures, albeit with no concordance between the two. Further optimization of sample preparation methods and sequencing platforms is needed before widespread adoption of this technology into clinical practice

    Trimeric Autotransporter Adhesin-Dependent Adherence of Bartonella henselae, Bartonella quintana, and Yersinia enterocolitica to Matrix Components and Endothelial Cells under Static and Dynamic Flow Conditions ▿ †

    No full text
    Trimeric autotransporter adhesins (TAAs) are important virulence factors of Gram-negative bacteria responsible for adherence to extracellular matrix (ECM) and host cells. Here, we analyzed three different TAAs (Bartonella adhesin A [BadA] of Bartonella henselae, variably expressed outer membrane proteins [Vomps] of Bartonella quintana, and Yersinia adhesin A [YadA] of Yersinia enterocolitica) for mediating bacterial adherence to ECM and endothelial cells. Using static (cell culture vials) and dynamic (capillary flow chambers) experimental settings, adherence of wild-type bacteria and of the respective TAA-negative strains was analyzed. Under static conditions, ECM adherence of B. henselae, B. quintana, and Y. enterocolitica was strongly dependent on the expression of their particular TAAs. YadA of Y. enterocolitica did not mediate bacterial binding to plasma or cellular fibronectin under either static or dynamic conditions. TAA-dependent host cell adherence appeared more significant under dynamic conditions although the total number of bound bacteria was diminished compared to the number under static conditions. Dynamic models expand the methodology to perform bacterial adherence experiments under more realistic, bloodstream-like conditions and allow dissection of the biological role of TAAs in ECM and host cell adherence under static and dynamic conditions
    corecore