205 research outputs found

    A fast - Monte Carlo toolkit on GPU for treatment plan dose recalculation in proton therapy

    Get PDF
    In the context of the particle therapy a crucial role is played by Treatment Planning Systems (TPSs), tools aimed to compute and optimize the tratment plan. Nowadays one of the major issues related to the TPS in particle therapy is the large CPU time needed. We developed a software toolkit (FRED) for reducing dose recalculation time by exploiting Graphics Processing Units (GPU) hardware. Thanks to their high parallelization capability, GPUs significantly reduce the computation time, up to factor 100 respect to a standard CPU running software. The transport of proton beams in the patient is accurately described through Monte Carlo methods. Physical processes reproduced are: Multiple Coulomb Scattering, energy straggling and nuclear interactions of protons with the main nuclei composing the biological tissues. FRED toolkit does not rely on the water equivalent translation of tissues, but exploits the Computed Tomography anatomical information by reconstructing and simulating the atomic composition of each crossed tissue. FRED can be used as an efficient tool for dose recalculation, on the day of the treatment. In fact it can provide in about one minute on standard hardware the dose map obtained combining the treatment plan, earlier computed by the TPS, and the current patient anatomic arrangement

    Novel imaging and quality assurance techniques for ion beam therapy: a Monte Carlo study

    Get PDF
    Ion beams exhibit a finite and well defined range in matter together with an “inverted” depth-dose profile, the so-called Bragg peak. These favourable physical properties may enable superior tumour-dose conformality for high precision radiation therapy. On the other hand, they introduce the issue of sensitivity to range uncertainties in ion beam therapy. Although these uncertainties are typically taken into account when planning the treatment, correct delivery of the intended ion beam range has to be assured to prevent undesired underdosage of the tumour or overdosage of critical structures outside the target volume. Therefore, it is necessary to define dedicated Quality Assurance procedures to enable in-vivo range verification before or during therapeutic irradiation. For these purposes, Monte Carlo transport codes are very useful tools to support the development of novel imaging modalities for ion beam therapy. In the present work, we present calculations performed with the FLUKA Monte Carlo code and preliminary experimental studies

    The FLUKA code for application of Monte Carlo methods to promote high precision ion beam therapy

    Get PDF
    Monte Carlo (MC) methods are increasingly being utilized to support several aspects of commissioning and clinical operation of ion beam therapy facilities. In this contribution two emerging areas of MC applications are outlined. The value of MC modeling to promote accurate treatment planning is addressed via examples of application of the FLUKA code to proton and carbon ion therapy at the Heidelberg Ion Beam Therapy Center in Heidelberg, Germany, and at the Proton Therapy Center of Massachusetts General Hospital (MGH) Boston, USA. These include generation of basic data for input into the treatment planning system (TPS) and validation of the TPS analytical pencil-beam dose computations. Moreover, we review the implementation of PET/CT (Positron-Emission-Tomography / Computed- Tomography) imaging for in-vivo verification of proton therapy at MGH. Here, MC is used to calculate irradiation-induced positron-emitter production in tissue for comparison with the +-activity measurement in order to infer indirect information on the actual dose delivery

    A fast - Monte Carlo toolkit on GPU for treatment plan dose recalculation in proton therapy

    Get PDF
    In the context of the particle therapy a crucial role is played by Treatment Planning Systems (TPSs), tools aimed to compute and optimize the tratment plan. Nowadays one of the major issues related to the TPS in particle therapy is the large CPU time needed. We developed a software toolkit (FRED) for reducing dose recalculation time by exploiting Graphics Processing Units (GPU) hardware. Thanks to their high parallelization capability, GPUs significantly reduce the computation time, up to factor 100 respect to a standard CPU running software. The transport of proton beams in the patient is accurately described through Monte Carlo methods. Physical processes reproduced are: Multiple Coulomb Scattering, energy straggling and nuclear interactions of protons with the main nuclei composing the biological tissues. FRED toolkit does not rely on the water equivalent translation of tissues, but exploits the Computed Tomography anatomical information by reconstructing and simulating the atomic composition of each crossed tissue. FRED can be used as an efficient tool for dose recalculation, on the day of the treatment. In fact it can provide in about one minute on standard hardware the dose map obtained combining the treatment plan, earlier computed by the TPS, and the current patient anatomic arrangement

    The role of nuclear reactions in Monte Carlo calculations of absorbed and biological effective dose distributions in hadron therapy

    Get PDF
    Monte Carlo codes are rapidly spreading among hadron therapy community due to their sophisticated nuclear/electromagnetic models which allow an improved description of the complex mixed radiation field produced by nuclear reactions in therapeutic irradiation. In this contribution results obtained with the Monte Carlo code FLUKA are presented focusing on the production of secondary fragments in carbon ion interaction with water and on CT-based calculations of absorbed and biological effective dose for typical clinical situations. The results of the simulations are compared with the available experimental data and with the predictions of the GSI analytical treatment planning code TRiP

    On the parametrization of lateral dose profiles in proton radiation therapy.

    Get PDF
    Abstract Purpose The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Moliere's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions. In this paper we have compared different parametrizations for the lateral dose profile of protons in water for therapeutical energies: the goal is to improve the performances of the actual treatment planning. Methods We have simulated typical dose profiles at the CNAO (Centro Nazionale di Adroterapia Oncologica) beamline with the FLUKA code and validated them with data taken at CNAO considering different energies and depths. We then performed best fits of the lateral dose profiles for different functions using ROOT and MINUIT. Results The accuracy of the best fits was analyzed by evaluating the reduced χ2, the number of free parameters of the functions and the calculation time. The best results were obtained with the triple Gaussian and double Gaussian Lorentz–Cauchy functions which have 6 parameters, but good results were also obtained with the so called Gauss–Rutherford function which has only 4 parameters. Conclusions The comparison of the studied functions with accurate and validated Monte Carlo calculations and with experimental data from CNAO lead us to propose an original parametrization, the Gauss–Rutherford function, to describe the lateral dose profiles of proton beams

    A new PET prototype for proton therapy: comparison of data and Monte Carlo simulations

    Get PDF
    Ion beam therapy is a valuable method for the treatment of deep-seated and radio-resistant tumors thanks to the favorable depth-dose distribution characterized by the Bragg peak. Hadrontherapy facilities take advantage of the specific ion range, resulting in a highly conformal dose in the target volume, while the dose in critical organs is reduced as compared to photon therapy. The necessity to monitor the delivery precision, i.e. the ion range, is unquestionable, thus different approaches have been investigated, such as the detection of prompt photons or annihilation photons of positron emitter nuclei created during the therapeutic treatment. Based on the measurement of the induced β+ activity, our group has developed various in-beam PET prototypes: the one under test is composed by two planar detector heads, each one consisting of four modules with a total active area of 10 × 10 cm2. A single detector module is made of a LYSO crystal matrix coupled to a position sensitive photomultiplier and is read-out by dedicated frontend electronics. A preliminary data taking was performed at the Italian National Centre for Oncological Hadron Therapy (CNAO, Pavia), using proton beams in the energy range of 93–112 MeV impinging on a plastic phantom. The measured activity profiles are presented and compared with the simulated ones based on the Monte Carlo FLUKA package

    First tests for an online treatment monitoring system with in-beam PET for proton therapy

    Full text link
    PET imaging is a non-invasive technique for particle range verification in proton therapy. It is based on measuring the beta+ annihilations caused by nuclear interactions of the protons in the patient. In this work we present measurements for proton range verification in phantoms, performed at the CNAO particle therapy treatment center in Pavia, Italy, with our 10 x 10 cm^2 planar PET prototype DoPET. PMMA phantoms were irradiated with mono-energetic proton beams and clinical treatment plans, and PET data were acquired during and shortly after proton irradiation. We created 1-D profiles of the beta+ activity along the proton beam-axis, and evaluated the difference between the proximal rise and the distal fall-off position of the activity distribution. A good agreement with FLUKA Monte Carlo predictions was obtained. We also assessed the system response when the PMMA phantom contained an air cavity. The system was able to detect these cavities quickly after irradiation.Comment: 11 pages, 6 figures, Proceedings for International Workshop on Radiation Imaging Detectors, 201

    Modelling the radiation action for the estimation of biological effects in humans

    Get PDF
    It is well known that ionizing radiation can induce biological effects at different levels, from DNA, chromosomes and cells up to tissues, organs and entire organisms. Theoretical models and Monte Carlo codes, especially those based on radiation track structure, can be of great help to elucidate the underlying mechanisms and to perform reliable predictions where data are lacking. In this work we will present and discuss a mechanistic ab initio model and a Monte Carlo code able to simulate the induction of chromosome aberrations (CAs) in human cells. This endpoint is particularly relevant, since some aberration types can lead to cell death, while others can lead to cell conversion to malignancy. The model is based on the hypothesis that only clustered lesions (CLs) of the DNA double-helix can evolve into aberrations. Simulated dose-response curves for CAs induced by different radiation types (including heavy ions) will be shown, together with applications to cancer risk estimation and biodosimetry. In this framework, we will also discuss examples of medical applications - including astronauts' exposure to space radiation - obtained with the FLUKA code, also taking into account the role of nuclear interactions
    • …
    corecore