2,163 research outputs found

    Personalised electronic messages to improve sun protection in young adults

    Get PDF
    The incidence of all skin cancers, including melanoma, continues to rise. It is well known that ultraviolet (UV) radiation is the main environmental risk factor for skin cancer, and excessive exposure at a young age increases the risk of developing skin cancer. The aim of this study was to determine the acceptability and feasibility of delivering sun protection messages via electronic media such as short message services (SMS) to people 18-40 years, and explore factors associated with their acceptability. Overall, 80% of participants agreed that they would like to receive some form of sun protection advice; of these, 20% prefer to receive it via SMS and 42% via email. Willingness to receive electronic messages about the UV index was associated with being unsure about whether a suntanned person would look healthy and greater use of sun protection in the past. Careful attention to message framing and timing of message delivery and focus on short-term effects of sun exposure such as sunburn and skin ageing should increase the acceptability of such messages to young people. We conclude that sun protection messages delivered to young adults via electronic media appear feasible and acceptable

    The brightness clustering transform and locally contrasting keypoints

    No full text
    In recent years a new wave of feature descriptors has been presented to the computer vision community, ORB, BRISK and FREAK amongst others. These new descriptors allow reduced time and memory consumption on the processing and storage stages of tasks such as image matching or visual odometry, enabling real time applications. The problem is now the lack of fast interest point detectors with good repeatability to use with these new descriptors. We present a new blob- detector which can be implemented in real time and is faster than most of the currently used feature-detectors. The detection is achieved with an innovative non-deterministic low-level operator called the Brightness Clustering Transform (BCT). The BCT can be thought as a coarse-to- fine search through scale spaces for the true derivative of the image; it also mimics trans-saccadic perception of human vision. We call the new algorithm Locally Contrasting Keypoints detector or LOCKY. Showing good repeatability and robustness to image transformations included in the Oxford dataset, LOCKY is amongst the fastest affine-covariant feature detectors

    Plasma heating in highly excited GaN/AlGaN multiple quantum wells

    Get PDF
    Time-resolvedphotoluminescence(PL)spectroscopy was used to investigate carrier distributions in a GaN/AlGaN multiple quantum well(MQW) sample under high excitation intensities necessary to achieve lasing threshold. Room temperaturePL spectra showed optical transitions involving both confined and unconfined states in the quantum well structure. Analysis of the experimental results using a microscopic theory, indicates that at high excitation the carrier distributions are characterized by plasma temperatures which are significantly higher than the lattice temperature. The implications of our findings on GaN MQW laser design are also discussed

    Porcine CD8αdim/-NKp46high NK cells are in a highly activated state

    Get PDF
    Natural Killer (NK) cells play a crucial role in the early phase of immune responses against various pathogens. In swine so far only little information about this lymphocyte population exists. Phenotypical analyses with newly developed monoclonal antibodies (mAbs) against porcine NKp46 recently revealed that in blood NKp46(-) and NKp46(+) cells with NK phenotype exist with comparable cytotoxic properties. In spleen a third NKp46-defined population with NK phenotype was observed that was characterised by a low to negative CD8α and increased NKp46 expression. In the current study it is shown that this NKp46(high) phenotype was correlated with an increased expression of CD16 and CD27 compared to the CD8α(+)NKp46(-) and NKp46(+) NK-cell subsets in spleen and blood. Additionally NKp46(high) NK cells expressed elevated levels of the chemokine receptor CXCR3 on mRNA level. Functional analyses revealed that splenic NKp46(high) NK cells produced much higher levels of Interferon-γ and Tumor Necrosis Factor-α upon stimulation with cytokines or phorbol-12-myristate-13-acetate/Ionomycin compared to the other two subsets. Furthermore, cross-linking of NKp46 by NKp46-specific mAbs led to a superior CD107a expression in the NKp46(high) NK cells, thus indicating a higher cytolytic capacity of this subset. Therefore porcine splenic NKp46(high) NK cells represent a highly activated subset of NK cells and may play a profound role in the immune surveillance of this organ

    SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova

    Full text link
    HET optical spectroscopy and unfiltered ROTSE-III photometry spanning the first 11 months since explosion of the Type II-P SN 2006bp are presented. Flux limits from the days before discovery combined with the initial rapid brightening suggest the supernova was first detected just hours after shock breakout. Optical spectra obtained about 2 days after breakout exhibit narrow emission lines corresponding to HeII 4200, HeII 4686, and CIV 5805 in the rest frame, and these features persist in a second observation obtained 5 hours later; however, these emission lines are not detected the following night nor in subsequent observations. We suggest that these lines emanate from material close to the explosion site, possibly in the outer layers of the progenitor that have been ionized by the high energy photons released at shock breakout. A P-Cygni profile is observed around 4450 A in the +2 and +3 day spectra. Previous studies have attributed this feature to high velocity H-beta, but we discuss the possibility that this profile is instead due to HeII 4687. Further HET observations (14 nights in total) covering the spectral evolution across the photometric plateau up to 73 days after breakout and during the nebular phase around day +340 are presented, and expansion velocities are derived for key features. The measured decay slope for the unfiltered light curve is 0.0073 +/- 0.0004 mag/day between days +121 and +335, which is significantly slower than the decay of rate 56Co. We combine our HET measurements with published X-ray, UV, and optical data to obtain a quasi-bolometric light curve through day +60. We see a slow cooling over the first 25 days, but no sign of an early sharp peak; any such feature from the shock breakout must have lasted less than ~1 day.[ABRIDGED]Comment: ApJ accepted, 43 page

    C3P: Context-Aware Crowdsourced Cloud Privacy

    Get PDF
    Due to the abundance of attractive services available on the cloud, people are placing an increasing amount of their data online on different cloud platforms. However, given the recent large-scale attacks on users data, privacy has become an important issue. Ordinary users cannot be expected to manually specify which of their data is sensitive or to take appropriate measures to protect such data. Furthermore, usually most people are not aware of the privacy risk that different shared data items can pose. In this paper, we present a novel conceptual framework in which privacy risk is automatically calculated using the sharing context of data items. To overcome ignorance of privacy risk on the part of most users, we use a crowdsourcing based approach. We use Item Response Theory (IRT) on top of this crowdsourced data to determine privacy risk of items and diverse attitudes of users towards privacy. First, we determine the feasibility of IRT for the cloud scenario by asking workers feedback on Amazon mTurk on various sharing scenarios. We obtain a good fit of the responses with the theory, and thus show that IRT, a well-known psychometric model for educational purposes, can be applied to the cloud scenario. Then, we present a lightweight mechanism such that users can crowdsource their sharing contexts with the server and obtain the risk of sharing particular data item(s) anonymously. Finally, we use the Enron dataset to simulate our conceptual framework, and also provide experimental results using synthetic data. We show that our scheme converges quickly and provides accurate privacy risk scores under varying conditions

    Complete population transfer in a degenerate 3-level atom

    Full text link
    We find conditions required to achieve complete population transfer, via coherent population trapping, from an initial state to a designated final state at a designated time in a degenerate 3-level atom, where transitions are caused by an external interaction. Complete population transfer from an initially occupied state 1 to a designated state 2 occurs under two conditions. First, there is a constraint on the ratios of the transition matrix elements of the external interaction. Second, there is a constraint on the action integral over the interaction, or "area", corresponding to the phase shift induced by the external interaction. Both conditions may be expressed in terms of simple odd integers.Comment: 22 pages, 4 figure

    Optical modes within III-nitride multiple quantum well microdisk cavities

    Get PDF
    Optical resonance modes have been observed in optically pumped microdisk cavitiesfabricated from 50 Å/50 Å GaN/AlxGa1−xN(x∼0.07) and 45 Å/45 Å InxGa1−xN/GaN(x∼0.15)multiple quantum well structures. Microdisks, approximately 9 μm in diameter and regularly spaced every 50 μm, were formed by an ion beametch process. Individual disks were pumped at 300 and 10 K with 290 nm laser pulses focused to a spot size much smaller than the disk diameter. Optical modes corresponding to (i) the radial mode type with a spacing of 49–51 meV (both TE and TM) and (ii) the Whispering Gallery mode with a spacing of 15–16 meV were observed in the GaN microdisk cavities. The spacings of these modes are consistent with those expected for modes within a resonant cavity of cylindrical symmetry, refractive index, and dimensions of the microdisks under investigation. The GaN-based microdisk cavity is compared with its GaAs counterpart and implications regarding future GaN-based microdisk lasers are discussed

    Routine measurement of serum procalcitonin allows antibiotics to be safely withheld in patients admitted to hospital with SARS-CoV-2 infection

    Get PDF
    Background. It can be a diagnostic challenge to identify COVID-19 patients without bacterial co-infection in whom antibiotics can be safely stopped. We sought to evaluate the validity of a guideline that recommends withholding antibiotics in patients with a low serum procalcitonin (PCT). Methods. We retrospectively collected 28-day outcome data on patients admitted to Sheffield Teaching Hospitals NHS Foundation Trust, UK, between 5 March and 15 April 2020, with a positive SARS-CoV-2 polymerase chain reaction (PCR) and PCT within 48 hours of diagnosis. PCT was considered negative if ≤0.25ng/ml and positive if >0.25ng/ml. Primary outcomes included antibiotic consumption, mortality, intensive care admission and length of hospital stay. Results. 368 patients met the inclusion criteria; 218 (59%) had a negative PCT and 150 (41%) positive. At 48 hours post-diagnosis, 73 (33%) of those with a negative PCT were receiving antimicrobials compared to 126 (84%) with a positive PCT (p<0.001), with a corresponding reduction in antimicrobial usage over 28 days (median DDD of 3.0 vs 6.8 (p<0.001); median DOT 2 vs 5 days (p<0.001) between the negative and positive PCT groups.) In the negative PCT group, there were fewer deaths (62 (28%) vs. 54 (36%), (p=0.021)) and critical care admissions (19 (9%) vs. 28 (19%), (p=0.007)) than in the positive PCT group. Median length of hospital stay was 8.7 and 9 days in the negative and positive PCT groups respectively. Conclusions. Procalcitonin is a valuable tool in the assessment of patients with SARS-CoV-2 infection, safely reducing the potential burden of unnecessary antibiotic usage

    Process evaluation for complex interventions in primary care: understanding trials using the normalization process model

    Get PDF
    Background: the Normalization Process Model is a conceptual tool intended to assist in understanding the factors that affect implementation processes in clinical trials and other evaluations of complex interventions. It focuses on the ways that the implementation of complex interventions is shaped by problems of workability and integration.Method: in this paper the model is applied to two different complex trials: (i) the delivery of problem solving therapies for psychosocial distress, and (ii) the delivery of nurse-led clinics for heart failure treatment in primary care.Results: application of the model shows how process evaluations need to focus on more than the immediate contexts in which trial outcomes are generated. Problems relating to intervention workability and integration also need to be understood. The model may be used effectively to explain the implementation process in trials of complex interventions.Conclusion: the model invites evaluators to attend equally to considering how a complex intervention interacts with existing patterns of service organization, professional practice, and professional-patient interaction. The justification for this may be found in the abundance of reports of clinical effectiveness for interventions that have little hope of being implemented in real healthcare setting
    • …
    corecore