48 research outputs found

    Muscle size explains low passive skeletal muscle force in heart failure patients.

    Get PDF
    BACKGROUND: Alterations in skeletal muscle function and architecture have been linked to the compromised exercise capacity characterizing chronic heart failure (CHF). However, how passive skeletal muscle force is affected in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the extent to which altered contractile properties and/or architecture might affect muscle and locomotor function. Therefore, the aim of this study was to investigate passive force in a single muscle for which non-invasive measures of muscle size and estimates of fiber force are possible, the soleus (SOL), both in CHF patients and age- and physical activity-matched control participants. METHODS: Passive SOL muscle force and size were obtained by means of a novel approach combining experimental data (dynamometry, electromyography, ultrasound imaging) with a musculoskeletal model. RESULTS: We found reduced passive SOL forces (∼30%) (at the same relative levels of muscle stretch) in CHF vs. healthy individuals. This difference was eliminated when force was normalized by physiological cross sectional area, indicating that reduced force output may be most strongly associated with muscle size. Nevertheless, passive force was significantly higher in CHF at a given absolute muscle length (non length-normalized) and likely explained by the shorter muscle slack lengths and optimal muscle lengths measured in CHF compared to the control participants. This later factor may lead to altered performance of the SOL in functional tasks such gait. DISCUSSION: These findings suggest introducing exercise rehabilitation targeting muscle hypertrophy and, specifically for the calf muscles, exercise that promotes muscle lengthening

    An integrated and coordinated approach to preventing recurrent coronary heart disease events in Australia: Policy statement from the Australian Cardiovascular Health and Rehabilitation Association

    Full text link
    • Implementing existing knowledge about cardiac rehabilitation (CR) and heart failure management could markedly reduce mortality after acute coronary syndromes and revascularisation therapy. • Contemporary CR and secondary prevention programs are cost-effective, safe and beneficial for patients of all ages, leading to improved survival, fewer revascularisation procedures and reduced rehospitalisation. • Despite the proven benefits attributed to these secondary prevention interventions, they are not well attended by patients. • Modern programs must be flexible, culturally safe, multifaceted and integrated with the patient's primary health care provider to achieve optimal and sustainable benefits for most patients

    Investigating the effectiveness and feasibility of exercise on microvascular reactivity and quality of life in systemic sclerosis patients: study protocol for a feasibility study

    Get PDF
    Background: Raynaud’s phenomenon is one of the first clinical manifestations observed in systemic sclerosis (SSc). This microvasculature disorder affects mostly the digits in over 95% of SSc patients, significantly affecting their healthrelated quality of life (HRQoL) and incurring higher hospital admissions and other healthcare costs. Exercise is known to improve both micro- and macrovascular function – aerobic exercise and resistance training, separately or combined, have been demonstrated to lead to significant vasculo-physiological improvements in conditions that present vasculopathy. However, the effects of a combined exercise programme on microcirculation in SSc patients has yet to be investigated. Therefore, the purpose of this study is to assess the effects of high-intensity interval training (HIIT) combined with circuit resistance training on the microvascular function in the digital area of SSc patients. Methods: This will be a randomised controlled, feasibility trial with two arms, wherein 30 patients with SSc in receipt of medical treatment will be randomly assigned to usual care (medical treatment) or to a 12-week supervised exercise programme. Patients in the exercise group will undertake two, 45-min sessions each week consisting of 30 min HIIT (30 s 100% peak power output/30 s passive recovery) on the arm crank ergometer and 15 min of upper body circuit resistance training. Patients will be assessed before as well as at 3 and 6 months following randomisation. Primary outcomes of the study will be recruitment and retention rate, intervention acceptability and adherence to the exercise programme. Secondary outcomes include the digital area cutaneous microvascular function (laser Doppler fluximetry combined with iontophoresis), physical fitness, functional ability, upper back transcutaneous oxygen tension, body composition and quality of life (EQ-5D-5L). Selected interviews with a subsample of patients will be undertaken to explore their experiences of having Raynaud’s phenomenon and the acceptability of the exercise intervention and study procedures. Discussion: Data from this study will be used to identify the feasibility of a combined exercise programme to be implemented in SSc patients, the acceptability of the intervention and the study design, and to determine the effects of exercise on the microvasculature. Overall, this study will provide sufficient data to inform and support a full multicentre clinical trial

    Combined aerobic and resistance exercise training decreases peripheral but not central artery wall thickness in subjects with type 2 diabetes

    Get PDF
    Objective Little is known about the impact of exercise training on conduit artery wall thickness in type 2 diabetes. We examined the local and systemic impact of exercise training on superficial femoral (SFA), brachial (BA), and carotid artery (CA) wall thickness in type 2 diabetes patients and controls. Methods Twenty patients with type 2 diabetes and 10 age- and sex-matched controls performed an 8-week training study involving lower limb-based combined aerobic and resistance exercise training. We examined the SFA to study the local effect of exercise, and also the systemic impact of lower limb-based exercise training on peripheral (i.e. BA) and central (i.e. CA) arteries. Wall thickness (WT), diameter and wall:lumen(W:L)-ratios were examined using automated edge detection of ultrasound images. Results Exercise training did not alter SFA or CA diameter in type 2 diabetes or controls (all P > 0.05). BA diameter was increased after training in type 2 diabetes, but not in controls. Exercise training decreased WT and W:L ratio in the SFA and BA, but not in CA in type 2 diabetes. Training did not alter WT or W:L ratio in controls (P > 0.05). Conclusion Lower limb-dominant exercise training causes remodelling of peripheral arteries, supplying active and inactive vascular beds, but not central arteries in type 2 diabetes

    Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 1 diabetes mellitus (T1DM) is associated with a high risk for early atherosclerotic complications especially risk of coronary heart disease.</p> <p>Objective</p> <p>To evaluate the impact of six months exercise prgram on glycemic control, plasma lipids values, blood pressure, severity and frequency of hypoglycemia, anthropometric measurements and insulin dose in a sample of adolescents with T1DM.</p> <p>Research design and methods</p> <p>A total of 196 type 1 diabetic patients participated in the study. They were classified into three groups: Group (A) did not join the exercise program(n = 48), group (B) attended the exercise sessions once/week (n = 75), group (C) attended the exercise sessions three times/week (n = 73). Studied parameters were evaluated before and six months after exercise programe.</p> <p>Results</p> <p>Exercise improved glycemic control by reducing HbA1c values in exercise groups (P = 0.03, P = 0.01 respectively) and no change in those who were not physically active (P = 0.2). Higher levels of HbA1c were associated with higher levels of cholesterol, LDL-c, and triglycerides (P = 0.000 each). In both groups, B and C, frequent exercise improved dyslipidemia and reduced insulin requirements significantly (P = 0.00 both), as well as a reduction in BMI (P = 0.05, P = 0.00 respectively) and waist circumference(P = 0.02, P = 0.00 respectively). The frequency of hypoglycemic attacks were not statistically different between the control group and both intervention groups (4.7 ± 3.56 and 4.82 ± 4.23, P = 0.888 respectively). Reduction of blood pressure was statistically insignificant apart from the diastolic blood presure in group C (P = 0.04).</p> <p>Conclusion</p> <p>Exercise is an indispensable component in the medical treatment of patients with T1DM as it improves glycemic control and decreases cardiovascular risk factors among them.</p

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Dysregulated Recruitment of the Histone Methyltransferase EZH2 to the Class II Transactivator (CIITA) Promoter IV in Breast Cancer Cells

    Get PDF
    One mechanism frequently utilized by tumor cells to escape immune system recognition and elimination is suppression of cell surface expression of Major Histocompatibility Class II (MHC II) molecules. Expression of MHC II is regulated primarily at the level of transcription by the Class II Transactivator, CIITA, and decreased CIITA expression is observed in multiple tumor types. We investigate here contributions of epigenetic modifications to transcriptional silencing of CIITA in variants of the human breast cancer cell line MDA MB 435. Significant increases in histone H3 lysine 27 trimethylation upon IFN-γ stimulation correlate with reductions in transcription factor recruitment to the interferon-γ inducible CIITA promoter, CIITApIV, and with significantly increased CIITApIV occupancy by the histone methyltransferase enhancer of zeste homolog 2 (EZH2). Most compelling is evidence that decreased expression of EZH2 in MDA MB 435 variants results in significant increases in CIITA and HLA-DRA mRNA expression, even in the absence of interferon-γ stimulation, as well as increased cell surface expression of MHC II. Together, these data add mechanistic insight to prior observations of increased EZH2 expression and decreased CIITA expression in multiple tumor types
    corecore