332 research outputs found

    Synthetic sustainability index (SSI) based on life cycle assessment approach of low impact development in the Mediterranean area

    Get PDF
    AbstractClimate change and the processes of urbanization alter the hydrologic and hydraulic regime of runoffs formation in urban areas. Low impact infrastructure development (LID) contributes to achieving conditions of invariance hydrological and hydraulics. The purpose of this work is to identify an index of synthetic sustainability (SSI) based on life cycle assessment (LCA). Such LCA evaluates design alternatives through the comparison of the different values of the SSI. The proposed methodology allows the evaluation of the SSI attributing to the individual layers of the LIDs different weights and taking into account both of the influence that each of them perform on invariance hydrologic and hydraulic both of the LCA normalized output. In this paper is showed a methodological implementation obtained by the analysis of a green roof and a permeable pavement. This green roof has been realized, on real scale, in the Urban Hydrology Experimental Park in University of Calabria (Italy)

    Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Get PDF
    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm−3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm−3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved

    Nanoliter contact angle probes tumor angiogenic ligand-receptor protein interactions

    Get PDF
    Any molecular recognition reaction supported by a solid-phase drives a specific change of the solid-solution interfacial tension. Sessile Contact Angle (CA) experiments can be readily used to track this thermodynamic parameter, prompting this well-known technique to be reinvented as an alternative, easy-access and label-free way to probe and study molecular recognition events. Here we deploy this technique, renamed for this application CONAMORE (CONtact Angle MOlecular REcognition), to study the interaction of the tumor-derived pro-angiogenic vascular endothelial growth factor-A (VEGF-A) with the extracellular domain of its receptor VEGFR2. We show that CONAMORE recognizes the high affinity binding of VEGF-A at nanomolar concentrations to surface-immobilized VEGFR2 regardless of the presence of a ten folds excess of a non specific interacting protein, and that it further proofs its specificity and reliability on competitive binding experiments involving neutralizing anti-VEGF-A antibodies. Finally, CONAMORE shows the outstanding capability to detect the specific interaction between VEGFR2 and low molecular weight ligands, such as Cyclo-VEGI, a VEGFR2 antagonist cyclo-peptide, that weights about 2 kDa

    XMM-Newton observation of MACHO 104.20906.960: a dwarf nova candidate with a 2 h period

    Full text link
    The binaries known as cataclysmic variables are particular binary systems in which the primary star (a white dwarf) accretes material from a secondary via Roche-lobe mechanism. Usually, these objects have orbital period of a few hours so that a detailed temporal analysis can be performed. Here, we present Chandra XMM{\it XMM}-Newton observations of a dwarf nova candidate identified in the past by optical observations towards the galactic Bulge and labeled as MACHO 104.20906.960. After a spectral analysis, we used the Lomb-Scargle technique for the period search and evaluated the confidence level using Monte-Carlo simulations. In this case, we found that the XX-ray source shows a period of 2.03−0.07+0.092.03_{-0.07}^{+0.09} hours (3σ\sigma error) so that it is most likely a system of interacting objects. The modulation of the signal was found with a confidence level of >>99%. The spectrum can be described by a two thermal plasma components with X-ray flux in the 0.3--10 keV energy band of 1.77−0.19+0.16×10−131.77_{-0.19}^{+0.16}\times10^{-13} erg s−1^{-1} cm−2^{-2}. We find that the distance of the source is approximately 1 kpc thus corresponding to a luminosity LX≃2×1031L_{X}\simeq 2\times 10^{31} erg s−1^{-1}.Comment: 2008, in press on New Astronomy, (http://www.elsevier.com/wps/find/journaldescription.cws_home/601274/description#description); XMM-Newton observation of MACHO 104.20906.960: a dwarf nova candidate with a 2 h perio

    The X-ray eclipse of the dwarf nova HT CAS observed by the XMM-Newton satellite: spectral and timing analysis

    Full text link
    A cataclysmic variable is a binary system consisting of a white dwarf that accretes material from a secondary object via the Roche-lobe mechanism. In the case of long enough observation, a detailed temporal analysis can be performed, allowing the physical properties of the binary system to be determined. We present an XMM-Newton observation of the dwarf nova HT Cas acquired to resolve the binary system eclipses and constrain the origin of the X-rays observed. We also compare our results with previous ROSAT and ASCA data. After the spectral analysis of the three EPIC camera signals, the observed X-ray light curve was studied with well known techniques and the eclipse contact points obtained. The X-ray spectrum can be described by thermal bremsstrahlung of temperature kT1=6.89±0.23kT_1=6.89 \pm 0.23 keV plus a black-body component (upper limit) with temperature kT2=30−6+8kT_2=30_{-6}^{+8} eV. Neglecting the black-body, the bolometric absorption corrected flux is FBol=(6.5±0.1)×10−12F^{\rm{Bol}}=(6.5\pm 0.1)\times10^{-12} erg s−1^{-1} cm−2^{-2}, which, for a distance of HT Cas of 131 pc, corresponds to a bolometric luminosity of (1.33±0.02)×1031(1.33\pm 0.02)\times10^{31} erg s−1^{-1}. The study of the eclipse in the EPIC light curve permits us to constrain the size and location of the X-ray emitting region, which turns out to be close to the white dwarf radius. We measure an X-ray eclipse somewhat smaller (but only at a level of ≃1.5σ\simeq 1.5 \sigma) than the corresponding optical one. If this is the case, we have possibly identified the signature of either high latitude emission or a layer of X-ray emitting material partially obscured by an accretion disk.Comment: Accepted for publication on Astronomy and Astrophysics, 200

    Physical and chemical mechanisms involved in adhesion of orthodontic bonding composites: in vitro evaluations

    Get PDF
    BackgroundBond strength of orthodontic composite is strongly influenced by molecular and structural mechanisms. Aim of this in vitro study was to compare bond strength of light-cure orthodontic composites by measuring debonding forces and evaluating locations of bond failure. Investigations on chemical compositions clarified adhesive behaviors and abilities, exploring effects of ageing processes in this junction materials.MethodsTwelve enamel discs, from human premolars, were randomly coupled to one orthodontic adhesive system (Transbond XT (TM) 3 M UNITEK, USA, Light-Cure Orthodontic Paste, LEONE, Italy and Bisco Ortho Bracket Paste LC, BISCO, Illinois) and underwent to Shear Bond Strength test. Metallic brackets were bonded to twenty-seven human premolar, with one of the adhesive systems, to quantify, at FE-SEM magnifications, after debonding, the residual material on enamel and bracket base surfaces. Raman Spectroscopy analysis was performed on eight discs of each composites to investigate on chemical compositions, before and after accelerated aging procedures in human saliva and sugary drink.ResultsOrthodontic adhesive systems showed similar strength of adhesion to enamel. The breakage of adhesive-adherent bond occurs in TXT at enamel-adhesive interface while in Bisco and Leone at adhesive-bracket interface. Accelerated in vitro aging demonstrated good physical-chemical stability for all composites, Bisco only, was weakly contaminated with respect to the other materials.ConclusionA similar, clinically adequate and acceptable bond strength to enamel for debonding maneuvers was recorded in all orthodontic adhesive systems under examination. No significant chemical alterations are recorded, even in highly critical situations, not altering the initial mechanical properties of materials

    22q11.2 Deletion Syndrome. Impact of Genetics in the Treatment of Conotruncal Heart Defects

    Get PDF
    Congenital heart diseases represent one of the hallmarks of 22q11.2 deletion syndrome. In particular, conotruncal heart defects are the most frequent cardiac malformations and are often associated with other specific additional cardiovascular anomalies. These findings, together with extracardiac manifestations, may affect perioperative management and influence clinical and surgical outcome. Over the past decades, advances in genetic and clinical diagnosis and surgical treatment have led to increased survival of these patients and to progressive improvements in postoperative outcome. Several studies have investigated long-term follow-up and results of cardiac surgery in this syndrome. The aim of our review is to examine the current literature data regarding cardiac outcome and surgical prognosis of patients with 22q11.2 deletion syndrome. We thoroughly evaluate the most frequent conotruncal heart defects associated with this syndrome, such as tetralogy of Fallot, pulmonary atresia with major aortopulmonary collateral arteries, aortic arch interruption, and truncus arteriosus, highlighting the impact of genetic aspects, comorbidities, and anatomical features on cardiac surgical treatment
    • …
    corecore