30 research outputs found

    Dominant mutants of ceruloplasmin impair the copper loading machinery in aceruloplasminemia.

    Get PDF
    The multicopper oxidase ceruloplasmin plays a key role in iron homeostasis, and its ferroxidase activity is required to stabilize cell surface ferroportin, the only known mammalian iron exporter. Missense mutations causing the rare autosomal neurodegenerative disease aceruloplasminemia were investigated by testing their ability to prevent ferroportin degradation in rat glioma C6 cells silenced for endogenous ceruloplasmin. Most of the mutants did not complement (i.e. did not stabilize ferroportin) because of the irreversible loss of copper binding ability. Mutant R701W, which was found in a heterozygous very young patient with severe neurological problems, was unable to complement per se but did so in the presence of copper-glutathione or when the yeast copper ATPase Ccc2p was co-expressed, indicating that the protein was structurally able to bind copper but that metal loading involving the mammalian copper ATPase ATP7B was impaired. Notably, R701W exerted a dominant negative effect on wild type, and it induced the subcellular relocalization of ATP7B. Our results constitute the first evidence of "functional silencing" of ATP7B as a novel molecular defect in aceruloplasminemia. The possibility to reverse the deleterious effects of some aceruloplasminemia mutations may disclose new possible therapeutic strategies

    Acute Loss of Iron-Sulfur Clusters Results in Metabolic Reprogramming and Generation of Lipid Droplets in Mammalian Cells

    Get PDF
    Iron–sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant–negative variants of the primary Fe-S biogenesis scaffold protein iron–sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S–containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∌12-fold increase in intracellular citrate content in Fe-S–deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S–deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S–deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues

    Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase.

    Get PDF
    Profound metabolic changes are characteristic of macrophages during classical activation and have been implicated in this phenotype. Here we demonstrate that nitric oxide (NO) produced by murine macrophages is responsible for TCA cycle alterations and citrate accumulation associated with polarization. 13C tracing and mitochondrial respiration experiments map NO-mediated suppression of metabolism to mitochondrial aconitase (ACO2). Moreover, we find that inflammatory macrophages reroute pyruvate away from pyruvate dehydrogenase (PDH) in an NO-dependent and hypoxia-inducible factor 1α (Hif1α)-independent manner, thereby promoting glutamine-based anaplerosis. Ultimately, NO accumulation leads to suppression and loss of mitochondrial electron transport chain (ETC) complexes. Our data reveal that macrophages metabolic rewiring, in vitro and in vivo, is dependent on NO targeting specific pathways, resulting in reduced production of inflammatory mediators. Our findings require modification to current models of macrophage biology and demonstrate that reprogramming of metabolism should be considered a result rather than a mediator of inflammatory polarization

    Laboratory measurements of electrical conductivities of hydrous and dry Mt. Vesuvius melts under pressure

    No full text
    International audienceQuantitative interpretation of MT anomalies in volcanic regions requires laboratory measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three lava compositions from Mt. Vesuvius (Italy) have been measured using an impedance spectrometer. Experiments were conducted on both glasses and melts between 400 and 1300°C, and both at ambient pressure in air and at high pressures (up to 400 MPa). Both dry and hydrous (up to 5.6 wt% H2O) melt compositions were investigated. A change of the conduction mechanism corresponding to the glass transition was systematically observed. The conductivity data were fitted by sample-specific Arrhenius laws on either side of Tg. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite to phonolite. For the three compositions investigated, increasing pressure decreases the conductivity, although the effect of pressure is relatively small. The three compositions investigated have similar activation volumes (ΔV=16-24 cm3/mol). Increasing the water content of the melt increases the conductivity. Comparison of activation energies (Ea) from conductivity and sodium diffusion, and use of the Nernst-Einstein relation allow sodium to be identified as the main charge carrier in our melts and presumably also in the corresponding glasses. Our data and those of previous studies highlight the correlation between the Arrhenius parameters Ea and σ0. A semi-empirical method allowing the determination of the electrical conductivity of natural magmatic liquids is proposed, in which the activation energy is modelled on the basis of the Anderson-Stuart model, σ0 being obtained from the compensation law and ΔV fitted from our experimental data. The model enables the electrical conductivity to be calculated for the entire range of melt compositions at Mt. Vesuvius and also predicts satisfactorily the electrical response of other melt compositions. Electrical conductivity data for Mt. Vesuvius melts and magmas are slightly lower than the electrical anomaly revealed by MT studies

    Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression

    Get PDF
    Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit+ neutrophils subsets can engage in oxidative mitochondrial metabolism. With limited glucose supply, oxidative neutrophils use mitochondrial fatty acid oxidation to support NADPH oxidase-dependent ROS production. In 4T1 tumour-bearing mice, mitochondrial fitness is enhanced in splenic neutrophils and is driven by c-Kit signalling. Concordantly, tumour-elicited oxidative neutrophils are able to maintain ROS production and T cell suppression when glucose utilisation is restricted. Consistent with these findings, peripheral blood neutrophils from patients with cancer also display increased immaturity, mitochondrial content and oxidative phosphorylation. Together, our data suggest that the glucose-restricted tumour microenvironment induces metabolically adapted, oxidative neutrophils to maintain local immune suppression

    A case of Parinaud's syndrome in a boy with delayed puberty.

    No full text
    The authors describe a case of Parinaud's syndrome in a 14-year-old boy with delayed puberty. The neurological examination and the neuroradiological work-up excluded the presence of cerebral pathological processes except for a pituitary microadenoma. As the sole presence of the microadenoma cannot justify gonadotropin deficiency, the authors in this case favor a form of isolated gonadotropin deficiency, and they suggest that the elevation paralysis can be put in the range of median line defects, such as labiopalatoschisis and hypoplasia of the olfactory bulbs, frequently associated with isolated hypogonadotropic hypogonadism

    Genistein up-regulates the iron efflux system in glial cells

    No full text
    Astrocytes accumulate iron under chronic oxidative stress conditions in ageing and neurological disorders. The soybean isoflavone genistein possesses antioxidant properties and selective estrogen-like activities. Here, a possible role of genistein in modulation of iron transport was explored in glial cells. Genistein significantly increased iron export through estrogen receptor-beta-dependent p38 MAPK activation. Evidence is presented that this effect is associated to a p38 MAPK-triggered up-regulation of the iron export system made by ceruloplasmin and ferroportin-1, a pathway requiring activation of the transcription factor C/EBP. (C) 2010 Elsevier Ireland Ltd. All rights reserved

    Role of External Loops of Human Ceruloplasmin in Copper Loading by ATP7B and Ccc2p*

    No full text
    Ceruloplasmin is a multicopper oxidase required for correct iron homeostasis.Previously, we have identified a ceruloplasmin mutant associated with the iron overload disease aceruloplasminemia, which was unable to acquire copper from the mammalian pump ATP7B but could be produced in an enzymatically active form in yeast. Here, we report the expression of recombinant ceruloplasmin in the yeast Pichia pastoris and the study of the role of five surface-exposed loops in copper incorporation by comparing the efficiencies of mammalian ATP7B and yeast Ccc2p. The possibility to “mix and match” mammalian and yeast multicopper oxidases and copper ATPases can provide clues on the molecular features underlying the process of copper loading in multicopper oxidases
    corecore