724 research outputs found

    The Yarkovsky Drift's Influence on NEAs: Trends and Predictions with NEOWISE Measurements

    Full text link
    We used WISE-derived geometric albedos (p_V) and diameters, as well as geometric albedos and diameters from the literature, to produce more accurate diurnal Yarkovsky drift predictions for 540 near-Earth asteroids (NEAs) out of the current sample of \sim 8,800 known objects. As ten of the twelve objects with the fastest predicted rates have observed arcs of less than a decade, we list upcoming apparitions of these NEAs to facilitate observations.Comment: Accepted for publication by The Astronomical Journal. 41 pages, 3 figure

    A revised asteroid polarization-albedo relationship using WISE/NEOWISE data

    Get PDF
    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log(albedo)-log(polarization slope)-log(minimum polarization). When projected to two dimensions the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with albedo and present the best fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D<30 km) asteroids are under-represented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies.Comment: 16 pages, Accepted to Ap

    Revising the age for the Baptistina asteroid family using WISE/NEOWISE data

    Get PDF
    We have used numerical routines to model the evolution of a simulated Baptistina family to constrain its age in light of new measurements of the diameters and albedos of family members from the Wide-field Infrared Survey Explorer. We also investigate the effect of varying the assumed physical and orbital parameters on the best-fitting age. We find that the physically allowed range of assumed values for the density and thermal conductivity induces a large uncertainty in the rate of evolution. When realistic uncertainties in the family members' physical parameters are taken into account we find the best-fitting age can fall anywhere in the range of 140-320 Myr. Without more information on the physical properties of the family members it is difficult to place a more firm constraint on Baptistina's age.Comment: 27 pages, 16 figures, accepted to Ap

    Space-Based Thermal Infrared Studies of Asteroids

    Full text link
    Large-area surveys operating at mid-infrared wavelengths have proven to be a valuable means of discovering and characterizing minor planets. Through the use of radiometric models, it is possible to derive physical properties such as diameters, albedos, and thermal inertia for large numbers of objects. Modern detector array technology has resulted in a significant improvement in spatial resolution and sensitivity compared with previous generations of space-based infrared telescopes, giving rise to a commensurate increase in the number of objects that have been observed at these wavelengths. Space-based infrared surveys of asteroids therefore offer an effective means of rapidly gathering information about small body populations' orbital and physical properties. The AKARI, WISE/NEOWISE, Spitzer, and Herschel missions have significantly increased the number of minor planets with well-determined diameters and albedos.Comment: Chapter for Asteroids IV book (accepted for publication

    NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results

    Get PDF
    The NEOWISE dataset offers the opportunity to study the variations in albedo for asteroid classification schemes based on visible and near-infrared observations for a large sample of minor planets. We have determined the albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo taxonomic classification schemes. We find that the S-complex spans a broad range of bright albedos, partially overlapping the low albedo C-complex at small sizes. As expected, the X-complex covers a wide range of albedos. The multi-wavelength infrared coverage provided by NEOWISE allows determination of the reflectivity at 3.4 and 4.6 μ\mum relative to the visible albedo. The direct computation of the reflectivity at 3.4 and 4.6 μ\mum enables a new means of comparing the various taxonomic classes. Although C, B, D and T asteroids all have similarly low visible albedos, the D and T types can be distinguished from the C and B types by examining their relative reflectance at 3.4 and 4.6 μ\mum. All of the albedo distributions are strongly affected by selection biases against small, low albedo objects, as all objects selected for taxonomic classification were chosen according to their visible light brightness. Due to these strong selection biases, we are unable to determine whether or not there are correlations between size, albedo and space weathering. We argue that the current set of classified asteroids makes any such correlations difficult to verify. A sample of taxonomically classified asteroids drawn without significant albedo bias is needed in order to perform such an analysis.Comment: Accepted to Ap

    WISE/NEOWISE Observations of the Jovian Trojans: Preliminary Results

    Get PDF
    We present the preliminary analysis of over 1739 known and 349 candidate Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). With this survey the available diameters, albedos and beaming parameters for the Jovian Trojans have been increased by more than an order of magnitude compared to previous surveys. We find that the Jovian Trojan population is very homogenous for sizes larger than 10\sim10km (close to the detection limit of WISE for these objects). The observed sample consists almost exclusively of low albedo objects, having a mean albedo value of 0.07±0.030.07\pm0.03. The beaming parameter was also derived for a large fraction of the observed sample, and it is also very homogenous with an observed mean value of 0.88±0.130.88\pm0.13. Preliminary debiasing of the survey shows our observed sample is consistent with the leading cloud containing more objects than the trailing cloud. We estimate the fraction to be N(leading)/N(trailing) 1.4±0.2\sim 1.4 \pm 0.2, lower than the 1.6±0.11.6 \pm 0.1 value derived by others.Comment: Accepted for publication in Astrophysical Journal. Electronic table will be available at the publishers websit

    Using Narrow Band Photometry to Detect Young Brown Dwarfs in IC348

    Full text link
    We report the discovery of a population of young brown dwarf candidates in the open star cluster IC348 and the development of a new spectroscopic classification technique using narrow band photometry. Observations were made using FLITECAM, the First Light Camera for SOFIA, at the 3-m Shane Telescope at Lick Observatory. FLITECAM is a new 1-5 micron camera with an 8 arcmin field of view. Custom narrow band filters were developed to detect absorption features of water vapor (at 1.495 microns) and methane (at 1.66 microns) characteristic of brown dwarfs. These filters enable spectral classification of stars and brown dwarfs without spectroscopy. FLITECAM's narrow and broadband photometry was verified by examining the color-color and color-magnitude characteristics of stars whose spectral type and reddening was known from previous surveys. Using our narrow band filter photometry method, it was possible to identify an object measured with a signal-to-noise ratio of 20 or better to within +/-3 spectral class subtypes for late-type stars. With this technique, very deep images of the central region of IC348 (H ~ 20.0) have identified 18 sources as possible L or T dwarf candidates. Out of these 18, we expect that between 3 - 6 of these objects are statistically likely to be background stars, with the remainder being true low-mass members of the cluster. If confirmed as cluster members then these are very low-mass objects (~5 Mjupiter). We also describe how two additional narrow band filters can improve the contrast between M, L, and T dwarfs as well as provide a means to determine the reddening of an individual object.Comment: 43 pages, 17 figures. Accepted for publication in the Astrophysical Journal 27 June 200

    Characterization of Active Main Belt Object P/2012 F5 (Gibbs): A Possible Impacted Asteroid

    Get PDF
    In this work we characterize the recently discovered active main belt object P/2012 F5 (Gibbs), which was discovered with a dust trail > 7' in length in the outer main belt, 7 months prior to aphelion. We use optical imaging obtained on UT 2012 March 27 to analyze the central condensation and the long trail. We find nuclear B-band and R-band apparent magnitudes of 20.96 and 19.93 mag, respectively, which give an upper limit on the radius of the nucleus of 2.1 km. The geometric cross-section of material in the trail was ~ 4 x 10^8 m^2, corresponding to a dust mass of ~ 5 x 10^7 kg. Analysis of infrared images taken by the Wide-Field Infrared Survey Explorer in September 2010 reveals that the object was below the detection limit, suggesting that it was less active than it was during 2012, or possibly inactive, just 6 months after it passed through perihelion. We set a 1-sigma upper limit on its radius during this time of 2.9 km. P/2012 F5 (Gibbs) is dynamically stable in the outer main belt on timescales of ~ 1 Gyr, pointing towards an asteroidal origin. We find that the morphology of the ejected dust is consistent with it being produced by a single event that occurred on UT 2011 July 7 ±\pm 20 days, possibly as the result of a collision with a small impactor.Comment: 29 pages, 5 figures. Accepted for publication in Ap

    The Euphrosyne family's contribution to the low albedo near-Earth asteroids

    Get PDF
    The Euphrosyne asteroid family is uniquely situated at high inclination in the outer Main Belt, bisected by the nu_6 secular resonance. This large, low albedo family may thus be an important contributor to specific subpopulations of the near-Earth objects. We present simulations of the orbital evolution of Euphrosyne family members from the time of breakup to the present day, focusing on those members that move into near-Earth orbits. We find that family members typically evolve into a specific region of orbital element-space, with semimajor axes near ~3 AU, high inclinations, very large eccentricities, and Tisserand parameters similar to Jupiter family comets. Filtering all known NEOs with our derived orbital element limits, we find that the population of candidate objects is significantly lower in albedo than the overall NEO population, although many of our candidates are also darker than the Euphrosyne family, and may have properties more similar to comet nuclei. Followup characterization of these candidates will enable us to compare them to known family properties, and confirm which ones originated with the breakup of (31) Euphrosyne.Comment: Accepted for publication in Ap
    corecore