1,059 research outputs found
Comment on Photothermal radiometry parametric identifiability theory for reliable and unique nondestructive coating thickness and thermophysical measurements, J. Appl. Phys. 121(9), 095101 (2017)
A recent paper [X. Guo, A. Mandelis, J. Tolev and K. Tang, J. Appl. Phys.,
121, 095101 (2017)] intends to demonstrate that from the photothermal
radiometry signal obtained on a coated opaque sample in 1D transfer, one should
be able to identify separately the following three parameters of the coating:
thermal diffusivity, thermal conductivity and thickness. In this comment, it is
shown that the three parameters are correlated in the considered experimental
arrangement, the identifiability criterion is in error and the thickness
inferred therefrom is not trustable.Comment: 3 page
Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media
The behaviour of two dimensional binary and ternary amphiphilic fluids under
flow conditions is investigated using a hydrodynamic lattice gas model. After
the validation of the model in simple cases (Poiseuille flow, Darcy's law for
single component fluids), attention is focussed on the properties of binary
immiscible fluids in porous media. An extension of Darcy's law which explicitly
admits a viscous coupling between the fluids is verified, and evidence of
capillary effects are described. The influence of a third component, namely
surfactant, is studied in the same context. Invasion simulations have also been
performed. The effect of the applied force on the invasion process is reported.
As the forcing level increases, the invasion process becomes faster and the
residual oil saturation decreases. The introduction of surfactant in the
invading phase during imbibition produces new phenomena, including
emulsification and micellisation. At very low fluid forcing levels, this leads
to the production of a low-resistance gel, which then slows down the progress
of the invading fluid. At long times (beyond the water percolation threshold),
the concentration of remaining oil within the porous medium is lowered by the
action of surfactant, thus enhancing oil recovery. On the other hand, the
introduction of surfactant in the invading phase during drainage simulations
slows down the invasion process -- the invading fluid takes a more tortuous
path to invade the porous medium -- and reduces the oil recovery (the residual
oil saturation increases).Comment: 48 pages, 26 figures. Phys. Rev. E (in press
Measuring frequency fluctuations in nonlinear nanomechanical resonators
Advances in nanomechanics within recent years have demonstrated an always
expanding range of devices, from top-down structures to appealing bottom-up
MoS and graphene membranes, used for both sensing and component-oriented
applications. One of the main concerns in all of these devices is frequency
noise, which ultimately limits their applicability. This issue has attracted a
lot of attention recently, and the origin of this noise remains elusive up to
date. In this Letter we present a very simple technique to measure frequency
noise in nonlinear mechanical devices, based on the presence of bistability. It
is illustrated on silicon-nitride high-stress doubly-clamped beams, in a
cryogenic environment. We report on the same dependence of the frequency
noise power spectra as reported in the literature. But we also find unexpected
{\it damping fluctuations}, amplified in the vicinity of the bifurcation
points; this effect is clearly distinct from already reported nonlinear
dephasing, and poses a fundamental limit on the measurement of bifurcation
frequencies. The technique is further applied to the measurement of frequency
noise as a function of mode number, within the same device. The relative
frequency noise for the fundamental flexure lies in the range
ppm (consistent with literature for cryogenic MHz devices), and
decreases with mode number in the range studied. The technique can be applied
to {\it any types} of nano-mechanical structures, enabling progresses towards
the understanding of intrinsic sources of noise in these devices.Comment: Published 7 may 201
Computation of dynamical correlation functions of Heisenberg chains in a field
We compute the momentum- and frequency-dependent longitudinal spin structure
factor for the one-dimensional spin-1/2 Heisenberg spin chain in a
magnetic field, using exact determinant representations for form factors on the
lattice. Multiparticle contributions are computed numerically throughout the
Brillouin zone, yielding saturation of the sum rule to high precision.Comment: 4 pages, 14 figure
On classical q-deformations of integrable sigma-models
JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0A procedure is developed for constructing deformations of integrable σ-models which are themselves classically integrable. When applied to the principal chiral model on any compact Lie group F, one recovers the Yang-Baxter σ-model introduced a few years ago by C. Klimčík. In the case of the symmetric space σ-model on F/G we obtain a new one-parameter family of integrable σ-models. The actions of these models correspond to a deformation of the target space geometry and include a torsion term. An interesting feature of the construction is the q-deformation of the symmetry corresponding to left multiplication in the original models, which becomes replaced by a classical q-deformed Poisson-Hopf algebra. Another noteworthy aspect of the deformation in the coset σ-model case is that it interpolates between a compact and a non-compact symmetric space. This is exemplified in the case of the SU(2)/U(1) coset σ-model which interpolates all the way to the SU(1, 1)/U(1) coset σ-modelPeer reviewedFinal Published versio
Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France
Every year, more than 50,000 wildland fires affect about 500,000 ha of vegetation in southern European countries, particularly in wildland-urban interfaces (WUI). This paper presents a method to characterize and map WUIs at large scales and over large areas for wildland fire prevention in the South of France. Based on the combination of four types of building configuration and three classes of vegetation structure, 12 interface types were classified. Through spatial analysis, fire ignition density and burned area ratio were linked with the different types of WUI. Among WUI types, isolated WUIs with the lowest housing density represent the highest level of fire risk
Resolution of the Nested Hierarchy for Rational sl(n) Models
We construct Drinfel'd twists for the rational sl(n) XXX-model giving rise to
a completely symmetric representation of the monodromy matrix. We obtain a
polarization free representation of the pseudoparticle creation operators
figuring in the construction of the Bethe vectors within the framework of the
quantum inverse scattering method. This representation enables us to resolve
the hierarchy of the nested Bethe ansatz for the sl(n) invariant rational
Heisenberg model. Our results generalize the findings of Maillet and Sanchez de
Santos for sl(2) models.Comment: 25 pages, no figure
On factorizing -matrices in and spin chains
We consider quantum spin chains arising from -fold tensor products of the
fundamental evaluation representations of and .
Using the partial -matrix formalism from the seminal work of Maillet and
Sanchez de Santos, we derive a completely factorized expression for the
-matrix of such models and prove its equivalence to the expression obtained
by Albert, Boos, Flume and Ruhlig. A new relation between the -matrices and
the Bethe eigenvectors of these spin chains is given.Comment: 30 page
Constant entropy sampling and release waves of shock compressions
We present several equilibrium methods that allow to compute isentropic
processes, either during the compression or the release of the material. These
methods are applied to compute the isentropic release of a shocked monoatomic
liquid at high pressure and temperature. Moreover, equilibrium results of
isentropic release are compared to the direct nonequilibrium simulation of the
same process. We show that due to the viscosity of the liquid but also to
nonequilibrium effects, the release of the system is not strictly isentropic
- …