The behaviour of two dimensional binary and ternary amphiphilic fluids under
flow conditions is investigated using a hydrodynamic lattice gas model. After
the validation of the model in simple cases (Poiseuille flow, Darcy's law for
single component fluids), attention is focussed on the properties of binary
immiscible fluids in porous media. An extension of Darcy's law which explicitly
admits a viscous coupling between the fluids is verified, and evidence of
capillary effects are described. The influence of a third component, namely
surfactant, is studied in the same context. Invasion simulations have also been
performed. The effect of the applied force on the invasion process is reported.
As the forcing level increases, the invasion process becomes faster and the
residual oil saturation decreases. The introduction of surfactant in the
invading phase during imbibition produces new phenomena, including
emulsification and micellisation. At very low fluid forcing levels, this leads
to the production of a low-resistance gel, which then slows down the progress
of the invading fluid. At long times (beyond the water percolation threshold),
the concentration of remaining oil within the porous medium is lowered by the
action of surfactant, thus enhancing oil recovery. On the other hand, the
introduction of surfactant in the invading phase during drainage simulations
slows down the invasion process -- the invading fluid takes a more tortuous
path to invade the porous medium -- and reduces the oil recovery (the residual
oil saturation increases).Comment: 48 pages, 26 figures. Phys. Rev. E (in press