7,504 research outputs found

    Superconductivity in striped and multi-Fermi-surface Hubbard models: From the cuprates to the pnictides

    Full text link
    Single- and multi-band Hubbard models have been found to describe many of the complex phenomena that are observed in the cuprate and iron-based high-temperature superconductors. Simulations of these models therefore provide an ideal framework to study and understand the superconducting properties of these systems and the mechanisms responsible for them. Here we review recent dynamic cluster quantum Monte Carlo simulations of these models, which provide an unbiased view of the leading correlations in the system. In particular, we discuss what these simulations tell us about superconductivity in the homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this behavior. We then describe recent simulations of a bilayer Hubbard model, which provides a simple model to study the type and nature of pairing in systems with multiple Fermi surfaces such as the iron-based superconductors.Comment: Published as part of Superstripes 2011 (Rome) conference proceeding

    Pseudogap and antiferromagnetic correlations in the Hubbard model

    Full text link
    Using the dynamical cluster approximation and quantum monte carlo we calculate the single-particle spectra of the Hubbard model with next-nearest neighbor hopping t′t'. In the underdoped region, we find that the pseudogap along the zone diagonal in the electron doped systems is due to long range antiferromagnetic correlations. The physics in the proximity of (0,π)(0,\pi) is dramatically influenced by t′t' and determined by the short range correlations. The effect of t′t' on the low energy ARPES spectra is weak except close to the zone edge. The short range correlations are sufficient to yield a pseudogap signal in the magnetic susceptibility, produce a concomitant gap in the single-particle spectra near (π,π/2)(\pi,\pi/2) but not necessarily at a location in the proximity of Fermi surface.Comment: 5 pages, 4 figure

    Stability of Impurities with Coulomb Potential in Graphene with Homogeneous Magnetic Field

    Get PDF
    Given a 2-dimensional no-pair Weyl operator with a point nucleus of charge Z, we show that a homogeneous magnetic field does not lower the critical charge beyond which it collapses.Comment: J. Math. Phys. (in press

    Identification of Putative Parasitism Genes Expressed in the Esophageal Gland Cells of the Soybean Cyst Nematode Heterodera glycines

    Get PDF
    Cloning parasitism genes encoding secretory proteins expressed in the esophageal gland cells is the key to understanding the molecular basis of nematode parasitism of plants. Suppression subtractive hybridization (SSH) with the microaspirated contents from Heterodera glycines esophageal gland cells and intestinal region was used to isolate genes expressed preferentially in the gland cells of parasitic stages. Twenty-three unique cDNA sequences from a SSH cDNA library were identified and hybridized to the genomic DNA of H. glycines in Southern blots. Full-length cDNAs of 21 clones were obtained by screening a gland-cell long-distance polymerase chain reaction cDNA library. Deduced proteins of 10 clones were preceded by a signal peptide for secretion, and PSORT II computer analysis predicted eight proteins as extracellular, one as nuclear, and one as plasmalemma localized. In situ hybridization showed that four of the predicted extracellular clones were expressed specifically in the dorsal gland cell, one in the subventral gland cells, and three in the intestine in H. glycines. The predicted nuclear clone and the plasmalemma-localized clone were expressed in the subventral gland cells and the dorsal gland cell, respectively. SSH is an efficient method for cloning putative parasitism genes encoding esophageal gland cell secretory proteins that may have a role in H. glycines parasitism of soybean

    The Parasitome of the Phytonematode Heterodera glycines

    Get PDF
    Parasitism genes expressed in the esophageal gland cells of phytonematodes encode secretions that control the complex process of plant parasitism. In the soybean cyst nematode, Heterodera glycines, the parasitome, i.e., the secreted products of parasitism genes, facilitate nematode migration in soybean roots and mediate the modification of root cells into elaborate feeding cells required to support the growth and development of the nematode. With very few exceptions, the identities of these secretions are unknown, and the mechanisms of cyst nematode parasitism, therefore, remain obscure. The most direct and efficient approach for cloning parasitism genes and rapidly advancing our understanding of the molecular interactions during nematode parasitism of plants is to create gland cell-specific cDNA libraries using cytoplasm microaspirated from the esophageal gland cells of various parasitic stages. By combining expressed sequence tag analysis of a gland cell cDNA library with high throughput in situ expression localization of clones encoding secretory proteins, we obtained the first comprehensive parasitome profile for a parasitic nematode. We identified 51 new H. glycines gland-expressed candidate parasitism genes, of which 38 genes constitute completely novel sequences. Individual parasitome members showed distinct gland cell expression patterns throughout the parasitic cycle. The parasitome complexity discovered paints a more elaborate picture of host cellular events under specific control by the nematode parasite than previously hypothesized

    Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding

    Get PDF
    As an alternative to Darwinian evolution relying on catalytic promiscuity, a protein may acquire auxiliary function upon metal binding, thus providing it with a novel catalytic machinery. Here we show that addition of cupric ions to a 6-phosphogluconolactonase 6-PGLac bearing a putative metal binding site leads to the emergence of peroxidase activity (kcat7.8 × 10−2 s−1, KM 1.1 × 10−5 M). Both X-ray crystallographic and EPR data of the copper-loaded enzyme Cu·6-PGLacreveal a bis-histidine coordination site, located within a shallow binding pocket capable of accommodating the o-dianisidine substrate

    A Profile of Putative Parasitism Genes Expressed in the Esophageal Gland Cells of the Root-knot Nematode Meloidogyne incognita

    Get PDF
    Identifying parasitism genes encoding proteins secreted from a nematode\u27s esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Meloidogyne incognita parasitism genes were cloned by microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. Of 2,452 cDNA clones sequenced, deduced protein sequences of 185 cDNAs had a signal peptide for secretion and, thus, could have a role in root-knot nematode parasitism of plants. High-throughput in situ hybridization with cDNA clones encoding signal peptides resulted in probes of 37 unique clones specifically hybridizing to transcripts accumulating within the subventral (13 clones) or dorsal (24 clones) esophageal gland cells of M. incognita. In BLASTP analyses, 73% of the predicted proteins were novel proteins. Those with similarities to known proteins included a pectate lyase, acid phosphatase, and hypothetical proteins from other organisms. Our cell-specific analysis of genes encoding secretory proteins provided, for the first time, a profile of putative parasitism genes expressed in the M. incognita esophageal gland cells throughout the parasitic cycle

    High precision beam momentum determination in a synchrotron using a spin resonance method

    Get PDF
    In order to measure the mass of the eta meson with high accuracy using the d+p -> 3He+eta reaction, the momentum of the circulating deuteron beam in the Cooler Synchrotron COSY of the Forschungszentrum Juelich has to be determined with unprecedented precision. This has been achieved by studying the spin dynamics of the polarized deuteron beam. By depolarizing the beam through the use of an artificially induced spin resonance, it was possible to evaluate its momentum p with a precision of dp/p < 10-4 for a momentum of roughly 3 GeV/c. Different possible sources of error in the application of the spin resonance method are discussed in detail and its possible use during a standard experiment is considered.Comment: 10 pages, 6 figures, 2 tables, published versio
    • …
    corecore