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2Institut für Kernphysik and Jülich Centre for Hadron Physics,

Forschungszentrum Jülich, D-52425 Jülich, Germany
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In order to measure the mass of the η meson with high accuracy using the dp →
3He η reaction, the

momentum of the circulating deuteron beam in the Cooler Synchrotron COSY of the Forschungszen-
trum Jülich has to be determined with unprecedented precision. This has been achieved by studying
the spin dynamics of the polarized deuteron beam. By depolarizing the beam through the use of an
artificially induced spin resonance, it was possible to evaluate its momentum p with a precision of
∆p/p < 10−4 for a momentum of roughly 3 GeV/c. Different possible sources of error in the appli-
cation of the spin-resonance method are discussed in detail and its possible use during a standard
experiment is considered.

PACS numbers: 29.27.Bd, 29.27.Hj

I. INTRODUCTION

For numerous high precision experiments, knowing the
beam momentum in an accelerator with the greatest ac-
curacy is essential. Obvious examples of this are investi-
gations of production reactions very close to the thresh-
olds as well as particle mass determinations on the basis
of reaction kinematics. Here we present a technique that
allows one to determine the momentum of a deuteron
beam which is suitable for use in a precise measurement
of the mass of the η meson.

Measurements of the mass of the η meson performed
at different experimental facilities over the last decade
have resulted in very precise results which differ by up
to 0.5 MeV/c2, i.e., by more than eight standard devia-
tions. The experiments that are no longer considered in
the PDG tables [1] generally involve the identification of
the η as a missing-mass peak produced in a hadronic reac-
tion. In order to see whether this is an intrinsic problem,
and to clarify the situation more generally, a refined mea-
surement of the dp → 3He η reaction was proposed [2] at
the Cooler Synchrotron COSY of the Forschungszentrum
Jülich [3].

After producing the η mesons through the dp → 3He η
reaction using a hydrogen cluster-jet target [4], the 3He
would be detected with the ANKE magnetic spectrom-
eter [5] that is located at an internal-target position of
the storage ring. Provided that the reaction is cleanly iso-
lated, the η mass can be extracted from pure kinematics
through the determination of the production threshold.
This requires one both to identify the threshold and to
measure accurately the associated beam momentum.

∗Electronic address: paul.goslawski@uni-muenster.de

We have previously proved that ANKE has essentially
100% acceptance for the dp → 3He η reaction for excess
energiesQ below about 10 MeV [6], though in that exper-
iment the deuteron beam was continuously ramped from
below the threshold up to Q ≈ 11 MeV. However, al-
though the threshold was well identified, the correspond-
ing value of the beam momentum was only known in the
experiment with a relative accuracy of about 10−3.
For the new η mass proposal [2], the decision was

taken to measure at thirteen fixed energies in the range
1 < Q < 10 MeV as well as Q = −5 MeV for back-
ground studies. To determine the mass using this kine-
matic method with a precision that is competitive with
other recent measurements, i.e., ∆mη < 50 keV/c2 [1],
the associated beam momenta have to be fixed with an
accuracy of ∆p/p < 10−4. This requires the thirteen
beam momenta in the range of 3100− 3200 MeV/c to be
measured to better than 300 keV/c.
Generally at synchrotron facilities like COSY, the ve-

locity of the beam particles, and hence the beam momen-
tum, is determined from the knowledge of the revolution
frequency combined with the absolute orbit length. The
accuracy that can be reached using this technique is lim-
ited by the measurement of the orbit length by, e.g., beam
position monitors. This is in the region of ∆p/p ≈ 10−3

and so an order of magnitude improvement is needed for
the η mass experiment. Because of the technical limi-
tations of such a macroscopic device, it is not feasible
to obtain the necessary increase in accuracy by simply
scaling up the number of beam pick-up electrodes. The
beam momentum must therefore be determined in some
other way.
The method proposed for electron colliders more than

thirty years ago to overcome this problem [7, 8] has been
very successfully applied at the VEPP accelerator of the
BINP at Novosibirsk to measure the masses of a wide
variety of mesons from the φ to the Υ [9]. The technique
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was further developed at DORIS in Hamburg [10] and
CESR in Cornell [11] as well as LEP at CERN [12].
The spin of a polarized beam particle precesses around

the normal to the plane of the machine, which is generally
horizontal. The spin can be perturbed by the applica-
tion of a horizontal rf magnetic field from, for example,
a solenoid. The beam depolarizes when the frequency of
the externally applied field coincides with that of the spin
precession in the ring. The usefulness of the technique
relies on the fact that a frequency f can be routinely
measured with a relative precision of ∆f/f = 10−5. Fur-
thermore, the position of the depolarizing resonance de-
pends purely upon the revolution frequency of the ma-
chine and the kinematical factor γ = E/mc2, where E
and m are the particle total energy and mass, respec-
tively. The measurements of the revolution and depolar-
izing frequencies together allow the evaluation of γ and
hence E and the beam momentum p.
There is no in-principle reason why the induced-

depolarization approach should not be equally applica-
ble to other beam particles with an intrinsic spin, such
as protons or deuterons. In fact, the effects have re-
cently been confirmed at COSY in studies of the spin
manipulation of both polarized proton [13] and deuteron
beams [14]. This is the methodology that we are pursu-
ing at COSY for the measurement of the η mass. For
the first time in 2007 it was possible in a test run to
reach an accuracy in the beam momentum calibration of
∆p/p < 10−4 using the technique with a coasting beam
but no internal target [15]. In the present paper we de-
scribe how the method can be used in a standard beam
time under normal experimental conditions in the pres-
ence of a thick internal target.
In Sec. II we describe the physical principles under-

lying the spin-resonance method. After discussing the
behavior of a vector polarized deuteron beam in COSY,
we show how to induce an artificial spin resonance to

depolarize the beam. The experimental conditions that
allow one to determine the two critical observables are
explained in Sec. III. The revolution frequency f0 is
measured via the Schottky noise of the beam and the
spin-resonance frequency fr using the rf solenoid and
the EDDA detector as a beam polarimeter [16]. The
deuteron beam results are presented in Sec. IV, where
the estimated uncertainties are discussed in some detail.
Our conclusions are summarized in Sec. V.

II. THEORETICAL BACKGROUND OF THE

SPIN-RESONANCE METHOD

A. Spin in synchrotrons

In contrast to the case of a spin-half fermion such
as an electron or proton, the deuteron is a spin-one
boson that can be placed in three magnetic sub-states
m = −1, 0, +1, and the resulting polarization phe-
nomenology is more complex. Eight independent param-
eters are necessary to characterize a spin-one beam, three
for the vector polarization and five for the tensor [17].
However, only the vector polarization

PV = (N+ −N−)/N , (1)

is used in the present experiment for the spin-resonance
method since it can be measured with the beam polarime-
ter to a higher precision than the tensor. Here Nm is the
number of particles in state-m and N = N+ +N− +N0

is the total number of particles.

The motion of the spin vector ~S, defined in the rest
frame of the particle, in a circular accelerator, syn-
chrotron or storage ring, is given by the Thomas-BMT
equation [18]:

d~S

dt
=

e

γm
~S ×

[

(1 + γG) ~B⊥ + (1 +G) ~B|| +

(

Gγ +
γ

γ + 1

) ~E × ~β

c

]

, (2)

where ~B⊥ and ~B|| are the transverse and longitudinal
components of the magnetic fields of the accelerator in

the laboratory frame and ~E represents the electric field.

The velocity of the particle is ~βc, in terms of which γ =

1/
√

1− β2.

In a synchrotron without horizontal magnetic fields
and where the electric field is always parallel to the
particle motion, the spin motion only depends on the
first term, i.e., is a function of the transverse magnetic

fields ~B⊥ of the accelerator. The deuteron spin precesses
around the stable spin direction, which is given by the

vertical fields of the guiding dipole magnets of the syn-
chrotron. The number of spin precessions during a single
circuit of the machine, the spin tune νs, is proportional to
the particle energy. In the coordinate basis of the moving
particle, the spin tune is given by

νs = Gγ , (3)

whereas, taking into account the extra rotation associ-
ated with a single circuit of the machine, this becomes
νs = 1+Gγ in the laboratory frame. Here G = (g−2)/2
is the gyromagnetic anomaly of the particle, where g is
the gyromagnetic factor. For deuterons the gyromag-
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netic anomaly, Gd = −0.1429872725±0.0000000073, can
be calculated from the ratios of the magnetic moments
and masses of the proton and deuteron [29].

B. Artificially induced depolarizing resonances

The beam polarization can be perturbed by a horizon-
tal magnetic field in the synchrotron and, if the frequency
of the perturbation coincides with the spin-precession fre-
quency, the beam depolarizes. One kind of first-order
resonance is the imperfection resonance. If the spin tune
is an integer, then the horizontal imperfection fields of
the synchrotron can interact resonantly with the particle
spin, building up effects coherently turn by turn. The
positions in momentum of the depolarizing resonances
depend on the gyromagnetic anomaly of the particle. In
contrast to the case of protons, where the first imper-
fection resonance occurs at a momentum of 464 MeV/c,
the first for deuterons is at 13 GeV/c, which is well out-
side the COSY momentum range. Furthermore, in the
present experiment the spin tune remains in the region
of νs = 0.2775− 0.2818.
Because of the betatron oscillation frequency of the

circulating beam, the particles can also encounter the
fields of the focusing quadrupole magnets in resonance
with the spin tune, which lead to a second kind of first-
order spin resonance, the so-called intrinsic resonance.
These resonances also occur only for energies that are
far beyond the COSY deuteron momentum and working
point range [19].
A horizontal rf field from a solenoid can lead to rf -

induced depolarizing resonances. Depending on the form
of the field, these can be used to depolarize the beam, to
measure the spin tune, or even to flip the spin direction
of the beam particles. The spin-resonance frequency for
a planar accelerator where there are no horizontal fields
is given by [8]

fr = (k + γ G)f0 , (4)

where f0 is the revolution frequency of the beam, γ G is
the spin tune, and k is an integer. If the rf frequency
of the perturbation is close to fr then the polarization
of the beam is maximally influenced. Horizontal mag-
netic fields in the accelerator lead to modifications of
Eqs. (3) and (4) [12, 20]. To avoid this complication,
all solenoidal and toroidal magnets in the COSY ring,
those of the experiment as well as those of the electron
cooler, were switched off. Residual shifts in the resonance
frequency arising from field errors and vertical orbit dis-
tortions were estimated and found to be negligibly small.
These effects are discussed in more detail in Sec. IVC.
It is important to note that Eq. (4) is only valid if, as is

the case for the present experiment, there is no full or par-
tial Siberian snake. The resonance with k = 1 was used
as this matches the frequency range of the rf solenoid
installed at COSY. The kinematic γ-factor, and thus the

beam momentum, can be determined purely by measur-
ing both the revolution and spin-resonance frequencies.

III. EXPERIMENTAL CONDITIONS

The COSY accelerator facility is presented in Fig. 1.
After pre-acceleration in the Cyclotron JULIC, COSY
can provide unpolarized and polarized proton and
deuteron beams in the momentum range of 300 −

3700 MeV/c. For the present experiment, two of the
four internal facilities were used, viz. ANKE with a thick
hydrogen cluster-jet target and EDDA [16] as beam po-
larimeter [21]. The beam was accelerated with the rf

cavity and the barrier bucket (bb) cavity was used to
compensate for the energy losses incurred through the
beam-target interactions (see Sec. III A). The position
of the rf solenoid is also shown. The integrated value of
the solenoid’s maximum longitudinal rf magnetic field is
∫

Brms dl = 0.67 T mm at a rf voltage of 5.7 kV rms.
Its frequency range is 0.5–1.5 MHz.

A. The rf cavity system

For a high precision experiment it is crucial that the
beam momentum remains stable throughout the whole
accelerator cycle. In a typical cycle of a standard scat-
tering experiment at ANKE, the beam is first injected
into COSY and accelerated to the nominal momentum.
The rf cavity is then switched off to provide a coasting
beam that fills the ring uniformly. This then gives con-
stant count rates, which reduces the dead time of the data
acquisition system (DAQ). But, because of the energy
losses of the charged beam particles through electromag-
netic processes as the beam passes repeatedly through
the target, the momentum changes and this leads to a
shift in the revolution frequency [22]. For a deuteron
beam and a hydrogen cluster-jet target with a density of
ρ = 1×1015 cm−2, the revolution frequency would change
by up to 103 Hz over a 180 s long cycle, corresponding
to a shift in beam momentum of 2.2 MeV/c.
To compensate for this effect and to guarantee a con-

stant beam momentum over the whole data-taking cycle,
a second cavity, the barrier bucket (bb) cavity [23], was
switched on after the rf cavity was switched off. In this
way a beam with a constant momentum over the whole
cycle could be produced that filled roughly 80 – 90% of
the ring homogenously and thus achieved the necessary
reduction in the dead time of the DAQ.

B. The cycle timing and the supercycle

The thirteen closely spaced energies studied near the
η threshold were divided into two so-called supercycles
that involved up to eight different COSY machine set-
tings. The first and the second supercycle each consisted
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Stochastic Cooling

FIG. 1: (Color online) The COSY accelerator facility. The cy-
clotron JULIC provides both unpolarized and polarized pro-
ton and deuteron beams for injection into the COSY ring,
where they are accelerated and stored. COSY operates in the
momentum range of 300 − 3700 MeV/c. The position of the
ANKE spectrometer with the thick internal hydrogen cluster-
jet target is shown, as are those of the rf solenoid to depolarize
the deuteron beam, the barrier bucket cavity to compensate
beam-target energy losses, and the EDDA detector that was
used as a beam polarimeter.

of seven different energies where, to allow comparison
between the two sets, the first energies of the two su-
percycles were chosen to be identical. Data at thirteen
different energies were therefore recorded. The different
machine settings in the supercycles were imposed sequen-
tially, after which the supercycle was repeated. Each su-
percycle was used for five days of continuous Schottky
data taking to study the long term stability of COSY
and to take data in parallel for the η meson mass deter-
mination. The reason for choosing supercycles instead of
independent measurements at fixed energies was to guar-
antee the same experimental conditions for each of the
beam energies in one supercycle. In this way the system-
atic uncertainties could be investigated in more detail, as
will be discussed in Sec. IV.

Before starting each of the five day blocks, the individ-
ual beam energies were measured using 36 s accelerator
cycle lengths. The timing structure of the accelerator
cycles is described in Table I. After the injection of the

TABLE I: Cycle timings used to determine the spin-resonance
frequency spectrum with the polarized beam.

Time (s) Process

0 Start of cycle: injection

0 – 3.7 Acceleration of the beam with rf cavity

3.7 Switch off rf cavity

4 Switch on bb cavity

20 – 25 rf solenoid on

25 – 30 Polarization measurement with EDDA

36 End of cycle

beam into COSY, the stored deuterons were accelerated
to the first nominal beam energy of the supercycle using
the regular COSY rf cavity. At t = 3.7 s this cavity was
switched off and at t = 4 s the bb cavity was brought
into operation to compensate for the beam energy losses.
At t = 20 s the amplitude of the depolarizing rf solenoid
was linearly ramped from 0 to 2.4 kV rms to produce a
∫

Brms dl = 0.29 T mm in 200 ms, remained constant
for 5 s, and was then ramped down in 200 ms. This
was followed by a beam polarization measurement for
five seconds using the EDDA detector [16]. At t = 36 s
the cycle was terminated. This procedure was repeated
at the same beam energy but with different rf solenoid
frequencies in order to obtain the spin-resonance spec-
trum. After completion of this first sub-measurement,
the next beam energy of the supercycle was used and the
corresponding spin-resonance spectrum measured until
complete data was obtained at all the energies of the su-
percycle.
After measuring the spin-resonance spectrum, the su-

percycle was switched on for five days of continuous data
taking to investigate the long term stability of the COSY
accelerator. For this study the polarization measure-
ments were omitted and total cycle lengths of 206 s were
used. After injection, acceleration and starting the bb

cavity, Schottky measurements were performed over the
time interval of t = 14−196 s. The eight beam energies in
one supercycle (the first one is installed twice) involved
a total time of 1648 s, after which the supercycle was
repeated. After the five days of data taking, the system
was returned to the conditions of Table I to repeat the
measurement of the spin-resonance spectrum in order to
control systematic effects.
The polarized ion source at the injector cyclotron of

COSY currently gives a beam intensity that is about an
order of magnitude too low compared to that which is re-
quired for the η mass proposal. It was therefore decided
to use this ion source only for the beam energy measure-
ment before and after the supercycles. As a consequence,
for the long term stability studies COSY was switched to
the unpolarized ion source, which allowed beam intensi-
ties up to nd ≈ 1× 1010. However, it had to be carefully
checked that the same COSY beam energies were ob-
tained when using the polarized and the unpolarized ion
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sources. To ensure this, the complete settings of the cy-
clotron, the beam injection, as well as COSY itself, were
fixed when switching from one ion source to the other.
The revolution frequencies f0 of the stored beam in the
two cases matched to within ∆f0 ≤ 6 Hz, proving the
validity of this method. The determination of ∆f0 was
limited in the present case by the experimental resolution
of the Schottky spectrum analyzer, though this could be
improved by better calibration.
Both in the beam energy determination, as well as later

in the Schottky data-taking time, one had to be assured
that the measurements within the cycles were started
sufficiently long after the ramping of the COSY dipole
magnets for the acceleration of the beam. Otherwise,
the not-yet-stable magnetic fields would lead to devia-
tions in the values determined for the beam momentum.
Detailed measurements of the beam energy by the spin-
resonance method as a function of the time in the cycle
showed that the experimental situation is already stable
ten seconds after the start of the cycle [24]. Therefore,
the rf solenoid field and the Schottky data-taking were
started 20 and 14 s after injection, respectively. As a
further check, measurements showed that the same beam
energy was observed close to the end of the cycle as at
the beginning [24] (see Sec. IVB). Thus it is valid to
investigate the beam energy at one fixed time during the
cycle and to take the resulting value as representative for
the whole cycle.

C. Determination of the revolution frequency f0

via the Schottky noise measurements

The revolution frequency f0 was measured by using the
Schottky noise of the deuteron beam. The origin of this
effect is the statistical distribution of the charged parti-
cles in the beam. This leads to random current fluctua-
tions that induce a voltage signal at a beam pick-up in the
ring. The Fourier transform of this voltage-to-time signal
by a spectrum analyzer delivers the frequency distribu-
tion around the harmonics of the revolution frequency of
the beam.
For the measurement of the Schottky noise, the beam

pick up and the spectrum analyzer of the stochastic cool-
ing system of COSY were used. The spectrum analyzer
(standard swept-type model HP 8595E) is sensitive to
the Schottky noise current, which is proportional to the
square root of the number N of the particles in the beam.
To get the Schottky power spectra, which represent the
momentum distribution [25], the amplitudes of the mea-
sured distribution were squared. The spectrum analyzer
was operated in the range of the thousandth harmonic
but, because of the different flat top revolution frequen-
cies, harmonics from 997 to 1004 were also measured.
The Schottky spectra were recorded every 30 s

throughout the whole beam time so that altogether
nearly 15000 distributions were collected and sorted by
energy, i.e., by flat top. This large number of Schottky

measurements allows the study of the long term stability
of the revolution frequency, which will be discussed in
Sec IV. From all the spectra taken over five days that
were measured under the same conditions at a particular
energy, one mean spectrum was calculated, an example
of which is presented in Fig. 2.
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FIG. 2: Mean Schottky power spectrum extracted from mea-
surements over five days at one energy. The statistical er-
ror bars lie within the data points. By calculating the
weighted arithmetic mean, an average revolution frequency
of f0 = 1403831.75 ± 0.12 Hz was deduced.

The full width at half maximum is in the region of
40 − 50 Hz for all energies. The position of the mean
distribution of the circulation frequency is stable for the
whole cycle time but, within the cycle, a small tail is seen
at lower frequencies. This corresponds to beam particles
that escaped the influence of the bb cavity but still circu-
lated in COSY. By calculating the weighted arithmetic
mean of the revolution frequency distribution, an aver-
age revolution frequency was estimated. The statistical
uncertainty of the mean revolution frequency, which is
below 0.2 Hz for all energies, depends on both the num-
ber of measured Schottky spectra and on the distribution
variations.

D. Determination of the spin-resonance frequency

fr via an induced spin resonance

For all thirteen energies the spin-resonance spectrum
was measured twice, once before and once after the five
days of Schottky data taking, as described in Sec. III B.
The polarization of the beam leads to an asymmetry in
scattering from a carbon target, which was measured
with the EDDA detector [26]. For our purposes abso-
lute calibrations of this device at the different energies
were not required; a quantity merely proportional to the
polarization such as the left-right asymmetry is sufficient.
An example of a spin-resonance spectrum at one en-

ergy is shown in Fig. 3. This displays the non-normalized
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FIG. 3: Spin-resonance measurements at one energy (closed
circles). The cycle timings are described in Table I. The open
symbols represent results obtained for an extended cycle time,
where the perturbing solenoid was switched on after 178 s.

polarization (“relative polarization”) as a function of the
solenoid frequency. Far away from the spin resonance
at 1.0116 MHz and 1.0120 MHz, a high beam polariza-
tion was measured. In contrast, when the frequency of
the solenoid coincided with the spin-precession frequency,
the beam was maximally depolarized. The full width at
half maximum was in the region of 80-100 Hz for all ener-
gies. Unlike the earlier spin-resonance test measurement
with a coasting beam, i.e., no cavities and no internal
target [15], the spin-resonance spectra are not smooth.
The structures, especially the double peak in the center,
are caused by the interaction of the deuteron beam with
the bb cavity. However, by comparing the spin-resonance
spectra measured for an unbunched and bunched beam
with accelerating cavity with h = 1 or the barrier bucket
cavity, it was found that the centers of gravity of the
spectra were the same.

To study the shapes of the spin-resonance spectra in
more detail, all 26 distributions were fitted with gaus-
sians and then shifted along the abscissa so that the
mean value of each individual spectrum was zero. In
addition, each spectrum was shifted along the ordinate
so that the off-resonance polarization vanished. Finally,
the data were scaled to a uniform height and displayed
together in a single plot to allow a comparison of all the
spectra. The resulting global spin-resonance spectrum
shown in Fig. 4(a) is symmetric around zero and smooth,
except for the structure at the center. This region is
shown in greater detail in the insert. In order to improve
the visibility of the structures close to the minimum, the
size of the frequency bins was increased and the results
displayed in Fig. 4(b).

A structure with a symmetric double peak and an os-
cillation is observed in the center of the spin resonance.
However, it is important to note that the gaussian mean
value, i.e., the spin-resonance frequency, is not influenced
by this structure. This was checked by making a fit where
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FIG. 4: Panel (a): The spin-resonance spectra normalized by
a gaussian. Panel (b): The same but with larger bins. The
spin-resonance shape is symmetric about zero and smooth
except in the center, where a double peak structure is seen.
The structures, especially the double peak in the center, are
caused by the interaction of the deuteron beam with the bb

cavity. The inserts show the resonance valley in greater detail.

the data points at the center were excluded. The spin-
resonance frequencies fr were extracted from the spin-
resonance spectra for all energies by making gaussian fits.
These gave χ2/ndf in the region of 2–3. The statistical
uncertainties of the spin-resonance frequencies are on the
order of 1–2 Hz at fr ≈ 1.01 MHz.

IV. RESULTS

A. Stability of the revolution frequency f0

The bb cavity compensates the effects of beam-target
energy losses and should ensure that the revolution fre-
quency remains constant. The large number of Schottky
measurements allowed us to study the long term stability
and to identify the magnitude of the variations of the rev-
olution frequency at COSY. Therefore all the Schottky
spectra at one energy from one day were analyzed and
the mean revolution frequency of that day calculated, as
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described in Sec III C.

In addition, the revolution frequencies for these data
were calculated for every four hours to study the daily
variation of the circulation frequency. The differences be-
tween the revolution frequencies of every four hours and
the mean frequency of the day are presented in the upper
part of Fig. 5. To study the variation of the revolution
frequency over the five days of data taking, the same pro-
cedure was carried out for the Schottky data measured
over this period. The differences between the mean rev-
olution frequencies of every day and the mean frequency
of the whole five days of data taking are presented in
the bottom part of Fig. 5. The horizontal bars represent
the time intervals for which the revolution frequency was
evaluated.
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FIG. 5: Stability of the revolution frequency f0. In panel (a)
the differences between the revolution frequencies for every
four hours and the mean revolution frequency of the day are
shown. In panel (b) the differences between the revolution
frequencies for each day and the mean revolution frequency
of the five days of Schottky data taking are shown. From
these figures it is clear that the revolution frequency at COSY
is very stable, with variations below 1 Hz at a circulation
frequency of f0 ≈ 1.4 MHz.

The analysis shows that the revolution frequency at
COSY over one day and also over five days is very sta-

ble. The variations of the revolution frequency are very
small, being on the order of 1 Hz at a circulation fre-
quency of f0 ≈ 1.4 MHz. In sum, it was possible to
determine the revolution frequencies for all energies with
a statistical uncertainty below 1 Hz. Nevertheless the
much larger systematic uncertainty of ∆f0 = 6 Hz dom-
inated the precision, and this arose from the preparation
of the Schottky spectrum analyzer used. A more refined
calibration of this device could improve the systematic
precision of the circulation frequency measurement down
to 1 Hz.

B. Spin-resonance frequency fr

It is important for the interpretation of the spin-
resonance measurements to know to what extent the po-
sitions of the observed spin-resonance frequencies are sta-
ble over the finite accelerator cycle in the presence of a
thick internal target. Therefore, in a special measure-
ment, the switch-on of the rf solenoid was delayed from
20 s to 178 s in order to investigate the position of the
spin-resonance frequency close to the end of a long cy-
cle. The observed data (open symbols of Fig. 3) showed
a resonance position which agreed with the data taken at
the beginning of the cycle to within 2 Hz.
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FIG. 6: (Color online) The spin-resonance frequencies were
measured twice, once before and once after the five days of
data taking. The red triangles present the shift of the spin-
resonance frequency fr from the first to the second measure-
ment. These shifts correspond to changes in the orbit length,
which are shown as blue circles. For the first supercycle, the
spin-resonance frequencies decrease between the two measure-
ments by 4 − 10 Hz, which corresponds to a increase in the
orbit length in the range of 0.7 − 1.6 mm. For the second
supercycle an increase of the spin resonance in the range of
12 − 17 Hz was observed, i.e., a decrease in the orbit length
in the range of 2.0 − 2.8 mm.

In Fig. 6 the shifts between the first and second spin-
resonance measurements are shown as red triangles for all
thirteen energies. The frequencies in the first supercycle
decrease by between 4 and 10 Hz for all energies, whereas
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for the second supercycle they increase in the range of
12− 17 Hz. These systematic shifts of the frequencies in
the same direction indicate slight changes in the COSY
settings. Because the revolution frequency is stable, as
described in Sec. IVA, the change is attributed to a shift
in the orbit length s.
The velocity v of the particle is the product of the

revolution frequency and the orbit length v = s f0. Us-
ing Eq. (4), the orbit length can be calculated from the
revolution and the spin-resonance frequencies:

s = c

[

1

f0
2
−

(

Gd

fr − f0

)2
]

1

2

, (5)

which allows the orbit lengths to be extracted with a
precision better than 0.3 mm for every flat top. Since
the nominal COSY circumference is 183.4 m, this gives
a relative accuracy of ∆s/s 6 2× 10−6. The uncertainty
is dominated by that of the spin-resonance frequency.
The shift in the spin-resonance frequency corresponds to
a change in the orbit length of up to 3 mm, which is
presented for all energies in Fig. 6 as blue circles. The
shifts of the spin-resonance frequencies of the first su-
percycle suggest an increase in the orbit length in the
range of 0.7 − 1.6 mm and to a decrease in the range of
2.0− 2.8 mm for the second supercycle.
To determine the precise beam momenta, the mean

value of the two spin-resonance measurements for every
energy was calculated. These mean values differ by up
to 10 Hz from the single spin-resonance measurements.
Nevertheless, in view of the observed shift of the spin-
resonance frequency, a very conservative systematic un-
certainty of ∆fr = 15 Hz was assumed.

C. Accuracy and systematic shifts of the resonance

frequency

One obvious limitation on the spin-resonance method
is given by the uncertainty in the deuteron gyromagnetic
anomaly Gd. However, this leads to a relative precision
in the beam momentum of ∆p/p = 5 × 10−8, which can
be safely neglected.
The first order uncertainties in the momentum mea-

surement depend on the accuracies to which the spin-
resonance and revolution frequencies are determined.
As described in Sec. IVB and Sec. IVA, these are
15 Hz/1.01 MHz = 1.5 × 10−5 and 6.0 Hz/1.40 MHz =
4.3 × 10−6, respectively. The error therefore arises pri-
marily from the measurement of the spin-resonance fre-
quency.
The intrinsic width of the spin-resonance may also im-

pose a limit on the accuracy achievable. In this exper-
iment, the integrated value of the solenoid’s maximum
longitudinal rf magnetic field gives a resonance strength
of about ǫ = 3 × 10−6, which leads to a spin resonance
with a FWHM width ≈ 9 Hz. This is much smaller

than the observed width of 80-100 Hz, which is there-
fore dominated by the momentum spread of the beam.
Higher order contributions lead to an additional spread
in the spin frequencies caused by nonlinear synchrotron
and betatron motion [27]. It should be stressed that these
higher order effects, which are negligible compared to the
calculated resonance width, do not contribute to a shift
of the resonances frequency.

Systematic shifts of the resonance frequencies may be
caused by deviations from idealized conditions in a real
accelerator like COSY. The possible effects and their con-
tribution to the accuracy of the resonance frequency de-
termination were estimated and are summarized in Ta-
ble II.

TABLE II: Accuracy and possible systematic shifts of the
resonance frequency fr.

Source ∆fr/fr

Resonance frequency accuracy from

depolarization spectra 1.5× 10−5

Spin tune shifts from longitudinal fields

(field errors) 1.4× 10−9

Spin tune shifts from radial fields

(field errors, vertical correctors) 6.0× 10−9

Spin tune shifts from radial fields

(vertical orbit in quadrupoles) 4.1× 10−8

Radial and longitudinal fields in the accelerator may
lead to a modification of Eq. (4) [20], i.e., to a sys-
tematic shift of the resonance frequency. Even though
all solenoidal and toroidal fields, which may act as par-
tial Siberian snakes, were turned off for this experiment,
field errors and vertical orbit distortions could generate
some net radial or longitudinal fields [9, 12]. These ef-
fects were estimated for the current experimental con-
ditions and found to be negligibly small. The typical
field errors of the main magnets, ∆B/B ≈ 2 × 10−4,
would lead to a shift in the spin-resonance frequency of
∆fr/fr < 1.4 × 10−9. Similarly, the observed vertical
orbit displacement of ∆yrms < 1.8 mm would induce a
shift of ∆fr/fr < 6.0× 10−9.

The largest contribution to a systematic shift of the
resonance frequency could come from the vertical closed
orbit deviations in the quadrupole magnets of the ring.
However, this contribution of ∆fr/fr = 4× 10−8 is com-
parable to the in-principle limitation of the method aris-
ing the knowledge of the deuteron G-factor. It is over
two orders of magnitude below the accuracy achieved in
the experiment.
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D. Determination of the deuteron beam momenta

p and the momentum smearing ∆p/p

The deuteron kinematic γ-factor and the beam mo-
menta were calculated according to Eq. (6)

γ =
1

Gd

(

fr
f0

− 1

)

p = md β γ = md

√

γ2 − 1 (6)

from the knowledge of the revolution and the spin-
resonance frequencies. The accuracies to which both
frequencies are determined are dominated by system-
atic effects. The revolution frequency measured by
the Schottky spectrum analyzer has an uncertainty of
∆f0 = 6 Hz, corresponding to one in the beam momen-
tum of 50 keV/c. The error in the determination of the
spin resonance frequency ∆fr = 15 Hz arises from the
small variations of the orbit length and corresponds to
an uncertainty in the beam momentum of 164 keV/c.
Because these systematic uncertainties are independent,
they are added quadratically to give a total uncertainty
∆p/p 6 6× 10−5, i.e., a precision of 170 keV/c for beam
momenta in the range of 3100−3200MeV/c. This is over
an order of magnitude better than ever reached before for
a standard experiment in the COSY ring. An example
of the reconstructed beam properties is presented in Ta-
ble III for one typical energy setting. The measured beam
momentum differed by ≈ 5 MeV/c from the nominal re-
quested momentum.

TABLE III: Typical results for one beam setting.

Nominal beam momentum 3150.5 [MeV/c]

Revolution frequency 1403832 ± 6 [Hz]

Spin-resonance frequency 1011810 ± 15 [Hz]

Orbit length 183.4341 ± 0.0002 [m]

Relativistic γ factor 1.9530 ± 0.0001

Reconstructed beam momentum 3146.41 ± 0.17 [MeV/c]

Two further quantities, the beam momentum smear-
ing δp/p and the smearing of the orbit length δs/s, can
be extracted from the spin-resonance spectra. As dis-
cussed in Sec. IVC, the measured spin-resonance widths
of 80 to 100 Hz are dominated by the momentum spread.
Assuming a gaussian distribution in the revolution fre-
quency with a FWHM = 40−50 Hz, and neglecting other
effects, the width of the spin-resonance distribution re-
quires a momentum spread of (δp/p)rms ≈ 2×10−4. This
upper limit on the beam momentum width corresponds
to a smearing of the orbit length of (δs/s)rms ≈ 4×10−5.
The momentum spread could be checked from the fre-

quency slip factor η, which was measured at each energy.
Using δp/p = 1/η × (δf0/f0), this leads for example at
pnominal = 3.1625 GeV/c to (δp/p)rms = 1.4×10−4, which

is consistent with the limit obtained from the resonance
distribution.

V. CONCLUSIONS AND OUTLOOK

In this paper we have shown how to determine the mo-
mentum of a deuteron beam in a circular accelerator with
high precision using the spin-resonance technique devel-
oped at the VEPP accelerator for electron beams. We
have studied the depolarization of a polarized deuteron
beam at COSY through an induced spin resonance for
thirteen different beam energies. This was done under
standard experimental conditions, i.e., with cavities, in
particular the bb cavity, and a thick internal cluster-jet
target. The momenta and other beam properties were
found by measuring the position of the spin-resonance
and revolution frequencies.

It was possible to determine the beam momenta with
an accuracy of ∆p/p 6 6 × 10−5, i.e., the thirteen mo-
menta in the range 3100 − 3200 MeV/c were measured
with precisions of ≈ 170 keV/c, a feat never before
achieved at COSY. The actual precision was limited by
the systematic variations of the orbit length and the char-
acteristics of the Schottky spectrum analyzer. The latter
could be improved significantly through the comparison
with a calibrated frequency standard.

The orbit length could be extracted from the revolu-
tion and spin-resonance frequencies with an accuracy of
∆s/s 6 2× 10−6. Thus for COSY, with a circumference
of 183.4 m, the orbit length could be measured with a
precision below 0.3 mm. This may allow one to gain a
better knowledge of the orbit behavior in COSY.

These results were achieved using a deuteron beam,
but there are no in-principle reasons why the depolariza-
tion technique should not be applicable to proton beams
at COSY with same success.

In summary, the spin-resonance method is a power-
ful beam diagnostic tool for circular accelerators, syn-
chrotrons or storage rings without Siberian snakes to in-
vestigate and determine beam properties. In our particu-
lar case it should eventually allow the mass of the η meson
to be measured with a precision of ∆mη 6 50 keV/c2.
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(2007); M. Hartmann, Int. J. Mod. Phys. E 18, 465
(2009).

[16] M. Altmeier et al., Eur. Phys. J. A 23, 351 (2005), and
references therein.

[17] G.G. Ohlsen, Rep. Prog. Phys. 35, 717 (1972).
[18] L.H. Thomas, Philos. Mag. 3, 1 (1927); V. Bargmann,

L. Michel, and V.L. Telegdi, Phys. Rev. Lett. 2, 435
(1959).

[19] A. Lehrach et al., AIP Conf. Proc. 675, 153 (2003).
[20] S.Y. Lee, Spin dynamics and snakes in synchrotrons,

World Scientific (1997), p. 67.
[21] D. Chiladze et al., Phys. Rev. ST Accel. Beams 9, 050101

(2006).
[22] H.J. Stein et al., Phys. Rev. ST Accel. Beams 11, 052801

(2008).
[23] R. Stassen et al., EPAC08 Proc., Genoa, Italy MOPC125

(2008).
[24] P. Goslawski, diploma thesis, Westfälische-Wilhelms-

Universität Münster, Germany (2009).
[25] D. Boussard, CERN Accelerator School Proc.: Advanced

Accelerator Physics, CERN 87-03:41 (1987).
[26] V. Schwarz, PhD thesis, Rheinische-Friedrich-Wilhelms-

Universität Bonn, Germany (1999).
[27] A.P. Lysenko, A.A. Polunin, and Yu.M. Shatunov, Part.

Accel. 18, 215 (1986).
[28] NIST - National Institute for Standards and Technology,

http://physics.nist.gov/cuu/Constants/index.html.
[29] Generally the g-factor of the deuteron is written in units

of the nuclear magneton. If it is required in terms of
the deuteron magneton, this has to be calculated from
the g-factor of the proton and the ratios of the mag-
netic moment and mass of proton and deuteron: gd =
1

2
gpµdmd/µpmp. The constants required can be found in

the NIST compilation [28] but in the evaluation of the un-
certainty one has taken into account the fact that the val-
ues (µd/µp , gp) and (md/mp , gp) are correlated. Having
done this, we find Gd = −0.1429872725± 0.0000000073.

www.fz-juelich.de/ikp/anke/en/proposal/public_proposal_187.pdf
http://physics.nist.gov/cuu/Constants/index.html

