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Given a two-dimensional no-pair Weyl operator WZ with a point nucleus of
charge Z, we show that a homogeneous magnetic field does not lower the crit-
ical charge beyond which it collapses. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4728982]

Dedicated to Elliott H. Lieb on the occasion of his 80th birthday.

I. INTRODUCTION

Perfect graphene is modeled in continuum one-particle approximation by a two-dimensional
free Weyl operator (massless Dirac operator). Non-perfect graphene has additional potentials; a
particular case of importance is the presence of an impurity of Coulomb type (see the review of
Castro Neto et al.3). As opposed to non-relativistic mechanics, in relativistic mechanics both kinetic
energy and the Coulomb energy have the same linear scaling for large momenta which implies the
existence of a critical coupling constant. This explains the interest in the subject in the physics
literature, see, e.g., Pereira et al.15 and Shyvtov et al.17 The critical coupling constant as occurring in
these papers can be mathematically thought of as that coupling constant were a natural definition of
self-adjointness ceases to exist. In addition to the electric impurity potential it is often also important
to study the systems with an additional homogeneous magnetic field perpendicular to the graphene
sheet. Of course, the question arises to what extent the presence of the magnetic field changes the
critical coupling constant.

If one is interested in multi-particle effects it is essential to have a well defined multi-particle
Hamiltonian (see Ref. 5 and the references therein). Because of the Weyl operator’s unboundedness
from above and below, a naive addition of the one-particle operators acting on the various particles
plus their interactions – as would be natural in non-relativistic quantum mechanics – does not
give meaningful Hamiltonians (Brown and Ravenhall2). This problem can – on a physical level
– be overcome by a quantum field theoretical treatment. Approximately, one can use the no-pair
Hamiltonians initially introduced by Brown and Ravenhall2 and further developed by Sucher.18

Because a non-perturbative analytic treatment of quantum electrodynamics is not available, we will
concentrate on the second alternative.

A description of – one-particle – no-pair operators in a nutshell is as follows: the state space
on which the no-pair Hamiltonians are defined depends on a Dirac sea in a similar way as the
Fock representation of the electron-positron field depends on the initial splitting of the Hilbert
space into electron and positron space (see Sec. 10.1.1 of Ref. 20). The Dirac sea is defined by an
orthogonal projection (1 − �) in the state space of the Weyl operator WZ , i.e., the Hilbert space
L2(C2,R2). The projection � is assumed fixed. The physically allowed states of Dirac particles will
be those which are orthogonal to the sea, i.e., they are eigenstates of �. Metaphorically speaking the
physical states are the vapor above the Dirac sea. The no-pair approximation will then be the Weyl
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operator projected onto the states of fixed particle number N – in our case N = 1 – in the vapor, i.e.,
Bz := �WZ�.

It is reasonable to expect that expectations of the no-pair Hamiltonians BZ are bounded from
below, if Z is small (close to zero) and is unbounded from below for large Z. The critical coupling
Zc constant is the value of the coupling constant where this change of behavior occurs. A priori Zc

can be expected to depend on the choice of the Dirac sea. A particular simple choice is to take the
Dirac sea as the one defined by the Weyl operator with the external homogeneous field. It is exactly
this operator which we will be interested in. Our goal is to show that Zc does not depend on the
presence of a homogeneous magnetic field.

Although the rest of the paper is on the one-particle level, our interest in the one-particle
stability stems from the multi-particle stability: the multi-particle energy of the no-pair Hamiltonian
is bounded from below if and only if the corresponding one-particle Hamiltonian is bounded from
below (see Ref. 5).

Our contribution is organized as follows: to escape the inconclusiveness of heuristic arguments,
we give a precise mathematical formulation of the problem, collect some well known relevant facts
and state our result (Sec. II). To prepare for the proof we study the partial wave analysis of the
underlying energy form in Sec. III. In Sec. IV we give the actual proof of our claim. The appendices
contain auxiliary material which we collect for the convenience of the reader.

II. NOTATION, FORMULATION OF THE PROBLEM, AND MAIN RESULT

The Weyl operator (massless Dirac operator) of a particle of charge − e in two dimensions in a
magnetic field ∂1A2 − ∂2A1 with vector potential A := (A1, A2) and an electric potential ϕ is given
by

WA,ϕ := vσ · (p + e

c
A) − eϕ, (1)

where v, c, and e are positive constants. Depending on the application, v could be, e.g., the velocity
of light or the Fermi velocity in graphene, c is the velocity of light, and σ = (σ1, σ2) are the first two
Pauli matrices, i.e.,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
.

In this paper, we are mainly interested in the case of a homogeneous magnetic field of strength
B > 0 orthogonal to the x1-x2-plane, i.e., A(x) = B

2 (−x2, x1), and an electric field generated by a
nucleus of atomic number Z, i.e., ϕ(x) = Ze/|x|. (Note that B < 0 corresponds just to a reflection of
the coordinates x → − x. For B = 0 see Remark 6 of Sec. II.) This operator is to be self-adjointly
realized in L2(R2,C2). Following Brown and Ravenhall2 – see also Sucher18, 19 – we will project
these operators to the orthogonal space of a Dirac sea. More precisely, we are interested in the
quadratic form of WA,ϕ restricted to the positive spectral subspace

H := {ψ ∈ L2(R2,C2) | ψ = �ψ}
with � := χ(0,∞)(WA,0).

By dilation WA,ϕ is unitarily equivalent to
√

eB/(2c�)vWe2 Z/(�v). Thus it suffices to
study WZ := σ · (p + (−x2, x1)) − Z

|x | assuming that e = v = � = 1. We use complex notation

z := x1 + ix2, and, correspondingly ∂̄ := 1
2 (∂1 + i∂2) and ∂ := 1

2 (∂1 − i∂2) and introduce
d := −2i(∂ +z̄/2) and d∗ := 2i(−∂̄ + z/2). This allows us to write more compactly

WZ =
(

0 d
d∗ 0

)
− Z

| · | . (2)

We define q0 as the linear span of the functions φm,n defined in (A1) of the Appendix A. We
also define Q0 as the linear span of the spinors ψm,n defined in (A9) of the Appendix A.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.187.254.47 On: Mon, 04 Nov 2013 07:51:05



095207-3 T. Maier and H. Siedentop J. Math. Phys. 53, 095207 (2012)

Theorem 1: The quadratic form (ψ, WZψ) is positive on Q0 and extends to a closed form E on
Q which is bounded from below, if

Z ≤ Zc :=
(

	( 1
4 )4

8π2
+ 8π2

	( 1
4 )4

)−1

. (3)

For Z > Zc the form is unbounded from below.

We remark:

(1) Physically E[ψ] is the energy of an electron in the state ψ on top of the Fermi sea defined by
H⊥ in the quantum dot given by the homogeneous magnetic field and an interstitial atom with
charge Z.

(2) If Z ≤ Zc, then the form E defines – according to Friedrichs9 [Satz 3] – a unique positive
self-adjoint operator whose form domain includes q0 and extends �Wz . It is called the no-pair
Hamiltonian of one electron in the quantum dot.

(3) For scalar type magnetic operators, like Schrödinger operators (p − A)2 + V or Chandrasekhar
operators |p − A| + V , it is known that A does not lower the ground state energy because of the
diamagnetic inequality. For operators involving spin in an essential way like the Pauli operator
this is known to be false. Although, in our case, we cannot expect the energy to increase when
A is turned on, our result shows, that the energy is not lowered dramatically, i.e., the critical
coupling constant is not lowered. Thus, the boundedness result can be interpreted as a weak
form of the diamagnetic inequality.

(4) The result for Z > Zc means physically that the electron is pulled into the nucleus of the
interstitial atom as the trial function of the proof will indicate.

(5) The critical coupling constant in the three-dimensional non-magnetic case with arbitrary non-
negative mass was found by Evans et al.6 Tix21, 22 sharpened the result to strict positivity with
a lower bound linear in the mass.

(6) The critical coupling constant in the two-dimensional non-magnetic case was investigated by
Bouzouina.1 An error in the constant he obtained was corrected by Walter.23

(7) The three-dimensional magnetic case – for a rather big class of magnetic fields – was treated by
Matte and Stockmeyer.14 They showed that the critical constant is not lowered by an intricate
resolvent method. The generality of their result is paid for by the absence of an explicit lower
bound on the energy. The bonus of our direct approach based on Lieb and Yau’s13 strategy in
the variant found in Ref. 6 – compared to transfering the methods of Ref. 14 – is our result on
the positivity of the energy.

(8) The numerical value of the critical coupling constant is Zc ≈ 0.3780 which is compared with the
expected critical coupling constant Z̃c of the existence of a distinguished self-adjoint extension
of the non-magnetic Weyl operator WZ . Pereira et al.15 and Shytov et al.17 suggest in physical
language and using physical arguments that Z̃c = 1/2. Recently Warmt24 [Satz 2.2.6] showed
that this is indeed the case.

III. THE POSITIVE SPECTRAL SUBSPACE AND PARTIAL WAVE ANALYSIS

The fact, that we are dealing with spinors in the positive spectral subspace of W0 allows us
to reduce the problem to unrestricted scalar wave functions (see Ref. 8 [Sec. 1.1] for the three-
dimensional case).

Lemma 1: The map

� : L2(R2) → H

u 
→ 1√
2

(
u

d∗|d∗|−1u

)
(4)

is unitary.
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Furthermore, its restriction to q0 is a unitary map from q0 to Q0 with the associated scalar
products.

Proof: First, we remark that � maps indeed to H. This holds, since H is the closure of Q0 in the
L2-norm.

To show that � is surjective, assume ψ = (u, v)t ∈ H and orthogonal to

{(w, d∗|d∗|−1w)t |w ∈ L2(R2)}.
This implies

(u, w) + (|d∗|−1dv,w) = (u + |d∗|−1dv,w) = 0

for all w ∈ L2(R2), i.e., u = −|d∗|−1dv.
Next we remark that (−|d∗|−1dφm,n

φm,n

)
,

n ∈ N0, m ∈ Z, are eigenvectors with negative eigenvalue, namely, −2
√

n + m+ + 1. Thus((−|d∗|−1dv

v

)
,

(
φm,n

−d∗|d∗|−1φm,n

))
= 0

for all n and m which implies (|d∗|−1dv, φm,n) = 0, i.e., dv = 0. Therefore, ψ = (0, v)t . Such
vectors are in the kernel of W0, i.e., orthogonal to the positive spectral space, so that in the end ψ

= 0 is the only vector in the positive spectral space which is orthogonal to �(L2(R2,C2)).
The identity (u, v)L2(R2) = (�u,�v)H for all u, v ∈ L2(R) is immediate, as is the unitarity of

the restriction. �
Using Lemma 1 we define the operator wZ := �∗WZ� on q0. The associated quadratic form

on q0 is

(u, wZ u) := (u,�∗WZ�u) = (u, |d∗|u) − Z (u, V u) (5)

with

V = 1

2

(
1

| · | + |d∗|−1d
1

| · |d∗|d∗|−1

)
. (6)

Corollary 1: The operators �WZ on Q0 and wz on q0 are unitarily equivalent by Lemma 1. In
particular both operators and also the associated forms have all the same lower maximal bound.

Next we calculate the matrix elements of wZ in the orthonormal basis given by the eigenfunctions
φm,n of w0. First of all, we remark that this matrix is diagonal in the angular momentum quantum
number m. We get for the matrix tm associated with w0 the following matrix elements

tm
n,n′ := (φm,n, w0φm,n′ )δn,n′ = 2

√
n + m+ + 1δn,n′ (7)

which is immediate from the eigenvalue equation (A10); for the first summand of the potential V
(see (6)) we get the matrix vm,0 with matrix elements

v
m,0
n,n′ = (φm,n,

1

| · |φm,n′ )

= 1

π
√

(n + 1)|m|(n′ + 1)|m|

min{n,n′}∑
k=0

(k + 1)|m|− 1
2

(n − k + 1
2 ) 1

2
(n′ − k + 1

2 ) 1
2

(8)

which is obtained by explicit calculation using the generating function of the generalized Laguerre
polynomials [see Formula 22.9.15 of Ref. 12] and their recursion relations [see Formula 6.1.15 of
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Ref. 12]. (For convenience we use Pochhammer’s notation (z)a := 	(z + a)/	(z) [see also (B1)].)
Eventually, the second summand of the potential V yields the matrix vm,1 with matrix elements

v
m,1
n,n′ = (d∗|d∗|−1φm,n,

1

| · |d∗|d∗|−1φm,n′ ) =
⎧⎨
⎩

v
m+1,0
n,n′ if m ≥ 0

v
m+1,0
n+1,n′+1 if m < 0.

(9)

This can be obtained from (8) by observing that

d∗|d∗|−1φm,n =
{

iφm+1,n if m ≥ 0

−iφm+1,n+1 if m < 0.
(10)

Thus, the quadratic form Em of the matrix (φm,n, wZφm,n′ ), for fixed angular momentum m ∈ Z,
on l2

0(N0) – the subscript denotes sequences of compact support – is given as

Em[a] =
∞∑

n,n′=0

an
[
tm
n,n′ − Z

2 (vm,0
n,n′ + v

m,1
n,n′ )

]
an′ . (11)

As mentioned in the Appendix A, (φm,n, wZφm ′,n′ ) = (φm,n, wZφm,n′ )δm,m ′ , i.e., both, potential
and kinetic energy, are diagonal in m. Thus,

(u, wzu) =
∑
m∈Z

Em[am] (12)

where we write am
n := (φm,n, u) for the generalized Fourier coefficients for u ∈ q0 and where we

collect those coefficients with the same angular momentum quantum number m and write

am = (am
0 , am

1 , . . .). (13)

Obviously, (am
n )n∈N0,m∈Z ∈ l2

0(N0 × Z).

Lemma 2: The following facts for the matrix elements v
m,0
n,n′ of the Coulomb potential 1/|z| hold:

� For all m ∈ Z and n, n′ ∈ N0

0 ≤ v
m,0
n,n′ = v

|m|,0
n,n′ . (14)

� For m, n, n′ ∈ N0

v
m,0
n,n′ ≥ v

m+1,0
n,n′ . (15)

Proof: The first claim – including the remarkable non-negativity of all matrix elements – is
immediate from the explicit expression (8).

The second claim, i.e., monotony of the matrix elements in m, follows again from (8), if

	(k + m + 3/2)√
	(n + m + 2)	(n′ + m + 1)

≤ 	(k + m + 1/2)√
	(n + m + 1)	(n′ + m + 1)

for k ≤ n, n′. This is immediate from the functional equation of the gamma function. �
Lemma 3: We have

0 ≤ (φm,n, V φm,n′ ) ≤ (φ0,n, V φ0,n′ ) (16)

for n, n′ ∈ N0 and m ∈ Z.

Proof: By (15)

v
m,0
n,n′ + v

m,1
n,n′ ≤ v

0,0
n,n′ + v

0,1
n,n′

for all m ≥ 0.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.187.254.47 On: Mon, 04 Nov 2013 07:51:05



095207-6 T. Maier and H. Siedentop J. Math. Phys. 53, 095207 (2012)

For negative m

v
m,0
n,n′ + v

m,1
n,n′ ≤ v

−1,0
n,n′ + v

−1,1
n,n′ ,

where we use all claims of Lemma 2. Thus, it suffices to show that

v
−1,0
n,n′ + v

−1,1
n,n′ ≤ v

0,0
n,n′ + v

0,1
n,n′ . (17)

By (9) we have v
0,1
n,n′ = v

1,0
n,n′ and v

−1,1
n,n′ = v

0,0
n+1,n′+1. Thus (17) is equivalent to

v
0,0
n+1,n′+1 ≤ v

0,0
n,n′ . (18)

This is shown by induction, first in n′ and then in n. �
Corollary 2: For all a ∈ l2

0(N0) we have

inf{Em[a]|a ∈ l2
0(N0)} ≥ inf{E0[a]|a ∈ l2

0(N0)}
and

inf{(u, wzu)|u ∈ q0} = inf E0[l2
0(N0)].

Proof: Since the kinetic energy
∑

n tm
n,n|an| is obviously invariant under the substitution

a → |a| and since the potential energy

−Z
∑
n,n′

an
v

m,0
n,n′ + v

m,1
n,n′

2
an′

decreases by the same substitution because of the positivity of the potential matrix elements
(Lemma 2, Formula (14)), it suffices to take the infimum over non-negative sequences a ∈ l2

0(N0)
only. Thus, the desired inequalities follow from the corresponding inequalities of the matrix elements
(16). �
IV. PROOF OF THE THEOREM

Proof: (Theorem 1) By Corollary 1 it is enough to study wZ . By Corollary 2, this is equivalent
to show lower boundedness of the quadratic form E0 on non-negative sequences a ∈ l2(N0).

At this point we embark on a strategy which goes back to Abel – at least – and which has been
introduced in relativistic quantum mechanics by Lieb and Yau;13 it basically consists in estimating
a non-diagonal operator by a diagonal one using the Schwarz inequality suitably. We will apply it
to the two potential matrices v0 and v1 with matrix elements v

0,0
n,n′ and v

0,1
n,n′ (11). (For the matrix

elements we will, from now on, suppress the reference to m = 0 as well and write simply vσ
n,n′ , σ

∈ {0, 1}.) Given any sequence (gn)n∈N0 with positive entries this strategy suggests estimating as
follows:

(a, vσ a) ≤
∞∑

n=0

a2
n

gn

∞∑
n′=0

vσ
n,n′ gn′, (19)

where we use matrix notation on the left and that vσ is symmetric. (Note that we suppress an index
σ with g although g can – and will – depend on σ .)

We start with the case σ = 0 and obtain

(a, v0a) = 1

π

∞∑
n,n′=0

anan′

min{n,n′}∑
k=0

(k + 1)− 1
2

(n − k + 1
2 ) 1

2
(n′ − k + 1

2 ) 1
2

≤ 1

π

∞∑
n=0

a2
n

gn

n∑
k=0

(k + 1)− 1
2

(n − k + 1
2 ) 1

2

∞∑
n′=0

1

(n′ + 1
2 ) 1

2

gn′+k (20)
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using (19) and substituting n′ → n′ + k. We pick for σ = 0

gn = 1

(n + 1
4 ) 3

4

. (21)

This allows to explicitly do the summation in n′ and k which gives

(a, v0a) ≤ 	( 1
4 )4

2π2

∞∑
n=0

	(n + 3
4 )

	(n + 1
4 )

a2
n . (22)

We apply Gautschi’s inequality (B2) for n ∈ N and we get

	(n + 3
4 )

	(n + 1
4 )

≤
√

n + 3

4
<

√
n + 1 (23)

which is also true for n = 0 by inspection. Thus,

(a, v0a) ≤ 	( 1
4 )4

2π2

∞∑
n=0

√
n + 1a2

n . (24)

It remains to treat the case σ = 1. We use again (19) and obtain

(a, v1a) = 1

π

∞∑
n,n′=0

anan′√
(n + 1)(n′ + 1)

min{n,n′}∑
k=0

(k + 1) 1
2

(n − k + 1
2 ) 1

2
(n′ − k + 1

2 ) 1
2

≤ 1

π

∞∑
n=0

a2
n

gn
√

n + 1

n∑
k=0

(k + 1) 1
2

(n − k + 1
2 ) 1

2

∞∑
n′=0

gn′+k√
n′ + k + 1(n′ + 1

2 ) 1
2

(25)

substituting n′ → n′ + k. In this case we pick

gn :=
√

n + 1

(n + 3
4 ) 5

4

(26)

which again allows for explicit summation in n′ and k yielding

(a, v1a) ≤ 32π2

	( 1
4 )4

∞∑
n=0

	(n + 5
4 )

	(n + 3
4 )

a2
n . (27)

For n ≥ 2 we have

(n − 1
4 )−1/2 <

√
n + 1

n + 1
4

. (28)

By Gautschi’s inequality (B2) the left hand side majorizes 	(n + 1
4 )/	(n + 3

4 ). Thus, by the gamma
function’s functional equation we get

	(n + 5
4 )

	(n + 3
4 )

<
√

n + 1. (29)

However, this inequality is also true for n = 0 and n = 1 by inspection. Thus,

(a, v1a) <
32π2

	( 1
4 )4

∞∑
n=0

√
n + 1a2

n . (30)

Putting all together we have

E0[a] ≥
∞∑

n=0

2
√

n + 1(1 − Z/Zc)a2
n ≥ 0 (31)
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for Z ≤ Zc. Note that the first inequality in (31) is indeed strict unless a = 0 because of (29). This
shows the positivity of the form and therefore the first part of the theorem.

Thus

(u, v)q :=
∑

n∈N0, m∈Z
((u, wzv) + (u, v)) (32)

is a scalar product on q0 and (ψ, ϕ)Q0 := (�u,�v)Q is a scalar product on Q0. The completions
which we denote by q and Q are subspaces of L2(R2) and H, respectively. The quadratic form
(ψ, WZψ) naturally extends to Q and yields the self-adjoint Hamiltonian BZ.

For completeness we note that for Z < Zc Eq. (31) shows that the norm ‖ · ‖q is equivalent to
the “Sobolev” type norm ‖u‖2

W0
:= ∑

m,n(
√

n + m+ + 1)|(φm,n, u)|2.
To prove the claimed unboundedness we pick a family of trial sequences a depending on an

integer N ∈ N – for readability we refrain from indicating this explicitly – given by

an :=
{

(n + 1)−3/4 if n ≤ N

0 if n > N .
(33)

We compute the expectation of the two summands vσ , σ ∈ {0, 1}, of the potential energy and obtain

(a, vσ a) = 1

π

N∑
k=0

(k + σ + 1)− 1
2

(
N−k+1∑

n=1

(n)− 1
2

(n + k)
3
4 + σ

2

)2

= 1

π

N∑
k=1

(k + σ + 1)− 1
2

(∫ ∞

0

dn

(n + k)
3
4 + σ

2 n
1
2

)2

+ O(N 0)

= (
3

4
+ σ

2
)2
− 1

2
log(N ) + O(N 0) (34)

for large N. Thus

E0[a] = (a, ta) − Z (a,
v0 + v1

2
a) = 2(1 − Z/Zc) log(N ) + O(N 0), (35)

i.e., the form is unbounded from below for Z > Zc. �
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APPENDIX A: USEFUL FACTS ON THE WEYL OPERATOR WITH HOMOGENEOUS
MAGNETIC FIELD

For the convenience of the reader and for fixing the notation we collect in this appendix some
facts related to the Weyl operator W0 with homogeneous magnetic field.

We write Lα
n (x) for the nth generalized Laguerre polynomial with parameter α (see Formula

22.2.12 of Ref. 12). For m ∈ Z and n ∈ N0 this allows to define the functions

φm,n(z) =
√

n!

π (n + |m|)!

⎧⎨
⎩

e− 1
2 zz z|m|L |m|

n (zz) if m ≥ 0

e− 1
2 zz z|m|L |m|

n (zz) if m < 0.
(A1)

In polar coordinates z = r exp (iϕ) these functions are written as

φm,n(r, ϕ) =
√

n!

π (n + |m|)!e− 1
2 r2

r |m|L |m|
n (r2)eimϕ, (A2)
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where – in abuse of notation – we use the same symbols despite the change of coordinates. Note
that these functions form an orthonormal basis of L2(R2) which follows from the fact that the
(2π )− 1/2exp (imϕ) are an orthonormal basis of L2(0, 2π ) and for every fixed m ∈ N0 the generalized
Laguerre polynomials Lm

n , n ∈ N0, under suitable renormalization, are an orthonormal basis of
L2((0, ∞), rme− rdr) (Hewitt11).

Using the recursion relations [22.7.29–22.7.32 of Ref. 12] of the generalized Laguerre polyno-
mials Lm

n and Lm
n

′(x) = −Lm+1
n−1 , which is immediate from the definition, we have

d∗φm,n = 2i sgn(m)
√

n + m+ + 1φm+1,n+θ(−m) (A3)

dφm,n = −2i sgn(m − 1)
√

n + m+φm−1,n−θ(−(m−1)) (A4)

dd∗φm,n = 4(n + m+ + 1)φm,n (A5)

d∗|d∗|−1φm,n = i sgn(m)φm+1,n+θ(−m) (A6)

for n ∈ N, m ∈ Z, where – as usual – m+ := max {0, m},

θ (x) :=
{

1 if x > 0

0 if x ≤ 0
and sgn(x) :=

{
1 if x ≥ 0

−1 if x < 0

(see also Sec. 7.1.3 of Ref. 20). Note that this solution is related to the non-relativistic Schrödinger
equation with homogeneous magnetic field in two dimensions (Fock7).

The angular momentum operator L is given as

L := x1 p2 − x2 p1 = z∂ − z̄∂̄ = 1

i
∂ϕ. (A7)

Writing the φm,n in spherical coordinates easily shows that they are eigenfunctions of L with
eigenvalue m, i.e.,

Lφm,n = mφm,n. (A8)

Since the φm,n form an orthonormal basis, the eigenvalue equation (A10) implies that |d*| is
invertible and d*|d*|− 1 is an isometric operator. The spinors

ψm,n = 1√
2

(
φm,n

d∗|d∗|−1φm,n

)
(A9)

for n ∈ N0 and m ∈ Z form an orthonormal basis of H as shown in the proof of Lemma 1.
Using (A3) through (A6) we find

W0ψm,n = 2
√

n + m+ + 1ψm,n, n ∈ N, m ∈ Z, (A10)

i.e, for fixed m ∈ Z, the spinor ψm,n is the nth eigenvector of W0 on the positive spectral subspace
H.

The total angular momentum operator J on L2(R2) is given as

J = L + 1

2

(
1 0
0 −1

)
. (A11)

The Formulae (A6)–(A9) imply

Jψm,n = (m + 1/2)ψm,n . (A12)

In fact,

[W0, J ] = 0 and [w0, L] = 0. (A13)
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Eventually note, that �*J� = L + 1/2 where � is the unitary map defined in Lemma 1. This
is the reason why it is equally natural to label the basis by the orbital angular momentum quantum
number m as to label it by the total angular momentum quantum number. We choose m since the
formulae are easier to handle.

APPENDIX B: SOME USEFUL FACTS ON GAMMA AND RELATED FUNCTIONS

The gamma function

	(z) :=
∫ ∞

0
zt e−t dt

t

is obviously positive on the positive half axis R+ where it is also analytic and log-convex (see, e.g.,
Theorem 8.18 of Ref. 16).

A useful combination of gamma functions is the Pochhammer symbol

(z)a := 	(z + a)

	(z)
(B1)

which is a meromorphic function in both variables z and a.

Lemma 4 (Formulae 6 and 7 of Ref. 10): For x ∈ R+ and 0 ≤ s ≤ 1

(x + 1)s−1 ≤ 	(x + s)

	(x + 1)
< xs−1. (B2)

Note that Gautschi claims the inequalities for x ∈ N only. However, his proof is valid also for
x ∈ R+.

Furthermore, we note the reflection formula [see Formula 6.1.17 of Ref. 4] which states that for
0 < Rz < 1

	(z)	(1 − z) = π

sin(π z)
. (B3)
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