240 research outputs found

    GOOD, BAD, OR BOTH? MEASUREMENT OF PHYSICIAN’S AMBIVALENT ATTITUDES TOWARDS AI

    Get PDF
    Artificial intelligence is currently one of the most controversial discussed technologies across various work domains. In healthcare, AI fosters widespread positive beliefs of substantially increasing the quality of care, yet evoking physicians’ fears of being marginalized or replaced. The described controversy leads to ambivalent attitudes, as physicians hold both strong positive and negative evaluations at the same time. However, current research in information systems has not been able to measure ambivalence because uni-polar attitude scales cannot assess this construct. Additionally, it is unclear whether ambivalence has positive or negative consequences and how it is related to resistance to change. In the context of AI in healthcare, we conducted a survey study (n=74) to measure context-specific attitudes and attitude ambivalence of physicians. We distinguish between two states of ambivalence and show that physicians who experience an inner conflict (Felt Ambivalence) from conflicting attitudes (Potential Ambivalence) develop resistance to change. Moreover, including ambivalence into a regression model explains more variance than uni-polar attitudes alone. With this research, we show that ambivalent attitudes can be measured in the context of technological change. Additionally, we explore how context-specific attitudes towards AI in healthcare drive physicians’ ambivalence towards it

    Differential gene transfers and gene duplications in primary and secondary endosymbioses

    Get PDF
    BACKGROUND: Most genes introduced into phototrophic eukaryotes during the process of endosymbiosis are either lost or relocated into the host nuclear genome. In contrast, groEL homologues are found in different genome compartments among phototrophic eukaryotes. Comparative sequence analyses of recently available genome data, have allowed us to reconstruct the evolutionary history of these genes and propose a hypothesis that explains the unusual genome distribution of groEL homologues. RESULTS: Our analyses indicate that while two distinct groEL genes were introduced into eukaryotes by a progenitor of plastids, these particular homologues have not been maintained in all evolutionary lineages. This is of significant interest, because two chaperone proteins always co-occur in oxygenic photosynthetic organisms. We infer strikingly different lineage specific processes of evolution involving deletion, duplication and targeting of groEL proteins. CONCLUSION: The requirement of two groEL homologues for chaperon function in phototrophs has provided a constraint that has shaped convergent evolutionary scenarios in divergent evolutionary lineages. GroEL provides a general evolutionary model for studying gene transfers and convergent evolutionary processes among eukaryotic lineages

    Molecular Insights Into Neutrophil Biology From the Zebrafish Perspective: Lessons From CD18 Deficiency

    Get PDF
    Neutrophils are key players in innate immunity and originate from the bone marrow of the adult mammalian organism. In mammals, mature neutrophils are released from the bone marrow into the peripheral blood where they circulate until their recruitment to sites of inflammation in a multistep adhesion cascade. Here, adhesion molecules of the beta(2) integrin family (CD11/CD18) are critically required for the initial neutrophil adhesion to the inflamed endothelium and several post-adhesion steps allowing their extravasation into the inflamed tissue. Within the mammalian tissue, interstitial neutrophil migration can occur widely independent of beta(2) integrins. This is in sharp contrast to neutrophil recruitment in zebrafish larvae (Danio rerio) where neutrophils originate from the caudal hematopoietic tissue and mainly migrate interstitially to sites of lesion upon the early onset of inflammation. However, neutrophils extravasate from the circulation to the inflamed tissue in zebrafish larvae at later-time points. Although zebrafish larvae are a widely accepted model system to analyze neutrophil trafficking in vivo, the functional impact of beta(2) integrins for neutrophil trafficking during acute inflammation is completely unknown in this model. In this study, we generated zebrafish with a genetic deletion of CD18, the beta subunit of beta(2) integrins, using CRISPR/Cas9 technology. Sequence alignments demonstrated a high similarity of the amino acid sequences between zebrafish and human CD18 especially in the functionally relevant I-like domain. In addition, the cytoplasmic domain of CD18 harbors two highly conserved NXXF motifs suggesting that zebrafish CD18 may share functional properties of human CD18. Accordingly, CD18 knock-out (KO) zebrafish larvae displayed the key symptoms of patients suffering from leukocyte adhesion deficiency (LAD) type I due to defects in ITGB2, the gene for CD18. Importantly, CD18 KO zebrafish larvae showed reduced neutrophil trafficking to sites of sterile inflammation despite the fact that an increased number of neutrophils was detectable in the circulation. By demonstrating the functional importance of CD18 for neutrophil trafficking in zebrafish larvae, our findings shed new light on neutrophil biology in vertebrates and introduce a new model organism for studying LAD type I

    Potential Screening at Electrode/Ionic Liquid Interfaces from In Situ X‐ray Photoelectron Spectroscopy

    Get PDF
    A new approach to investigate potential screening at the interface of ionic liquids (ILs) and charged electrodes in a two-electrode electrochemical cell by in situ X-ray photoelectron spectroscopy has been introduced. Using identical electrodes, we deduce the potential screening at the working and the counter electrodes as a function of applied voltage from the potential change of the bulk IL, as derived from corresponding core level binding energy shifts for different IL/electrode combinations. For imidazolium-based ILs and Pt electrodes, we find a significantly larger potential screening at the anode than at the cathode, which we attribute to strong attractive interactions between the imidazolium cation and Pt. In the absence of specific ion/electrode interactions, asymmetric potential screening only occurs for ILs with different cation and anion sizes as demonstrated for an imidazolium chloride IL and Au electrodes, which we assign to the different thicknesses of the electrical double layers. Our results imply that potential screening in ILs is mainly established by a single layer of counterions at the electrode.Fil: Greco, Francesco. Universitat Erlangen-Nuremberg; AlemaniaFil: Shin, Sunghwan. Universitat Erlangen-Nuremberg; AlemaniaFil: Williams, Federico JosĂ©. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Heller, Bettina S. J.. Universitat Erlangen-Nuremberg; AlemaniaFil: Maier, Florian. Universitat Erlangen-Nuremberg; AlemaniaFil: SteinrĂŒck, Hans Peter. Universitat Erlangen-Nuremberg; Alemani

    Li₀.₆[Li₀.₂Sn₀.₈S₂] – a layered lithium superionic conductor

    Get PDF
    One of the key challenges of energy research is finding solid electrolytes with high lithium conductivities comparable to those of liquid electrolytes. In this context, developing new structural families of potential Li+ ion conductors and identifying structural descriptors for fast Li+ ion conduction to occur is key to expand the scope of viable Li+ ion conductors. Here, we report that the layered material Li0.6[Li0.2Sn0.8S2] shows a Li+ ion conductivity comparable to the currently best lithium superionic conductors (LISICONs). Li0.6[Li0.2Sn0.8S2] is composed of layers comprising edge-sharing Li/SnS6 octahedra, interleaved with both tetrahedrally and octahedrally coordinated Li+ ions. Pulsed field gradient (PFG) NMR studies on powder samples show intragrain (bulk) diffusion coefficients DNMR on the order of 10−11 m2 s−1 at room temperature, which corresponds to a conductivity σNMR of 9.3 × 10−3 S cm−1 assuming the Nernst–Einstein equation, thus putting Li0.6[Li0.2Sn0.8S2] en par with the best Li solid electrolytes reported to date. This is in agreement with impedance spectroscopy on powder pellets, showing a conductivity of 1.5 × 10−2 S cm−1. Direct current galvanostatic polarization/depolarization measurements on such samples show negligible electronic contributions (less than 10−9 S cm−1) but indicate significant contact resistance (d.c. conductivity in a reversible cell is 1.2 × 10−4 S cm−1 at 298 K). Our results suggest that the partial occupation of interlayer Li+ positions in this layered material is beneficial for its transport properties, which together with tetrahedrally coordinated Li sites provides facile Li+ ion diffusion pathways in the intergallery space between the covalent Sn(Li)S2 layers. This work therefore points to a generic design principle for new layered Li+ ion conductors based on the controlled depletion of Li+ ions in the interlayer space

    Coronin 1B Controls Endothelial Actin Dynamics at Cell-Cell Junctions and Is Required for Endothelial Network Assembly

    Get PDF
    Development and homeostasis of blood vessels critically depend on the regulation of endothelial cell-cell junctions. VE-cadherin (VEcad)-based cell-cell junctions are connected to the actin cytoskeleton and regulated by actin-binding proteins. Coronin 1B (Coro1B) is an actin binding protein that controls actin networks at classical lamellipodia. The role of Coro1B in endothelial cells (ECs) is not fully understood and investigated in this study. Here, we demonstrate that Coro1B is a novel component and regulator of cell-cell junctions in ECs. Immunofluorescence studies show that Coro1B colocalizes with VEcad at cell-cell junctions in monolayers of ECs. Live-cell imaging reveals that Coro1B is recruited to, and operated at actin-driven membrane protrusions at cell-cell junctions. Coro1B is recruited to cell-cell junctions via a mechanism that requires the relaxation of the actomyosin cytoskeleton. By analyzing the Coro1B interactome, we identify integrin-linked kinase (ILK) as new Coro1B-associated protein. Coro1B colocalizes with α-parvin, an interactor of ILK, at the leading edge of lamellipodia protrusions. Functional experiments reveal that depletion of Coro1B causes defects in the actin cytoskeleton and cell-cell junctions. Finally, in matrigel tube network assays, depletion of Coro1B results in reduced network complexity, tube number and tube length. Together, our findings point toward a critical role for Coro1B in the dynamic remodeling of endothelial cell-cell junctions and the assembly of endothelial networks

    BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle

    Get PDF
    Brain-derived neurotrophic factor (BDNF) influences the differentiation, plasticity, and survival of central neurons and likewise, affects the development of the neuromuscular system. Besides its neuronal origin, BDNF is also a member of the myokine family. However, the role of skeletal muscle-derived BDNF in regulating neuromuscular physiology in vivo remains unclear. Using gain- and loss-of-function animal models, we show that muscle-specific ablation of BDNF shifts the proportion of muscle fibers from type IIB to IIX, concomitant with elevated slow muscle-type gene expression. Furthermore, BDNF deletion reduces motor end plate volume without affecting neuromuscular junction (NMJ) integrity. These morphological changes are associated with slow muscle function and a greater resistance to contraction-induced fatigue. Conversely, BDNF overexpression promotes a fast muscle-type gene program and elevates glycolytic fiber number. These findings indicate that BDNF is required for fiber-type specification and provide insights into its potential modulation as a therapeutic target in muscle diseases

    SSN2V: unsupervised OCT denoising using speckle split

    Get PDF
    AbstractDenoising in optical coherence tomography (OCT) is important to compensate the low signal-to-noise ratio originating from laser speckle. In recent years learning algorithms have been established as the most powerful denoising approach. Especially unsupervised denoising is an interesting topic since it is not possible to acquire noise free scans with OCT. However, speckle in in-vivo OCT images contains not only noise but also information about blood flow. Existing OCT denoising algorithms treat all speckle equally and do not distinguish between the noise component and the flow information component of speckle. Consequently they either tend to either remove all speckle or denoise insufficiently. Unsupervised denoising methods tend to remove all speckle but create results that have a blurry impression which is not desired in a clinical application. To this end we propose the concept, that an OCT denoising method should, besides reducing uninformative noise, additionally preserve the flow-related speckle information. In this work, we present a fully unsupervised algorithm for single-frame OCT denoising (SSN2V) that fulfills these goals by incorporating known operators into our network. This additional constraint greatly improves the denoising capability compared to a network without. Quantitative and qualitative results show that the proposed method can effectively reduce the speckle noise in OCT B-scans of the human retina while maintaining a sharp impression outperforming the compared methods.</jats:p

    Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia

    Get PDF
    Chronically high blood glucose (hyperglycemia) leads to diabetes, fatty liver disease, and cardiovascular disease. Obesity is a major risk factor for hyperglycemia, but the underlying mechanism is unknown. Here we show that a high fat diet (HFD) in mice causes early loss of expression of the glycolytic enzyme Hexokinase 2 (HK2) specifically in adipose tissue. Adipose-specific knockout of Hk2 caused enhanced gluconeogenesis and lipogenesis in liver, a condition known as selective insulin resistance, leading to glucose intolerance. Furthermore, we observed reduced hexokinase activity in adipose tissue of obese and diabetic patients, and identified a loss-of-function mutation in the hk2 gene of naturally hyperglycemic Mexican cavefish. Mechanistically, HFD in mice led to loss of HK2 by inhibiting translation of Hk2 mRNA. Our findings identify adipose HK2 as a critical mediator of systemic glucose homeostasis, and suggest that obesity-induced loss of adipose HK2 is an evolutionarily conserved, non-cell-autonomous mechanism for the development of hyperglycemia
    • 

    corecore