3,385 research outputs found

    Roughness correction to the Casimir force : Beyond the Proximity Force Approximation

    Full text link
    We calculate the roughness correction to the Casimir effect in the parallel plates geometry for metallic plates described by the plasma model. The calculation is perturbative in the roughness amplitude with arbitrary values for the plasma wavelength, the plate separation and the roughness correlation length. The correction is found to be always larger than the result obtained in the Proximity Force Approximation.Comment: 7 pages, 3 figures, v2 with minor change

    Qualidade de sementes forrageiras de clima temperado.

    Get PDF
    Atual contexto do setor produtivo; PrejuĂ­zos decorrentes da baixa qualidade de sementes; Atributos da qualidade de sementes forrageiras.bitstream/item/61500/1/DT-119.pd

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    The Seyfert Population in the Local Universe

    Full text link
    The magnitude-limited catalog of the Southern Sky Redshift Survey (SSRS2), is used to characterize the properties of galaxies hosting Active Galactic Nuclei. Using emission-line ratios, we identify a total of 162 (3%) Seyfert galaxies out of the parent sample with 5399 galaxies. The sample contains 121 Seyfert 2 galaxies and 41 Seyfert 1. The SSRS2 Seyfert galaxies are predominantly in spirals of types Sb and earlier, or in galaxies with perturbed appearance as the result of strong interactions or mergers. Seyfert galaxies in this sample are twice as common in barred hosts than the non-Seyferts. By assigning galaxies to groups using a percolation algorithm we find that the Seyfert galaxies in the SSRS2 are more likely to be found in binary systems, when compared to galaxies in the SSRS2 parent sample. However, there is no statistically significant difference between the Seyfert and SSRS2 parent sample when systems with more than 2 galaxies are considered. The analysis of the present sample suggests that there is a stronger correlation between the presence of the AGN phenomenon with internal properties of galaxies (morphology, presence of bar, luminosity) than with environmental effects (local galaxy density, group velocity dispersion, nearest neighbor distance).Comment: 35 pages, 13 figures, Accepted to be publised in Astronomical Journa

    Casimir torque between corrugated metallic plates

    Full text link
    We consider two parallel corrugated plates and show that a Casimir torque arises when the corrugation directions are not aligned. We follow the scattering approach and calculate the Casimir energy up to second order in the corrugation amplitudes, taking into account nonspecular reflections, polarization mixing and the finite conductivity of the metals. We compare our results with the proximity force approximation, which overestimates the torque by a factor 2 when taking the conditions that optimize the effect. We argue that the Casimir torque could be measured for separation distances as large as 1 ÎĽm.\mu{\rm m}.Comment: 7 pages, 3 figures, contribution to QFEXT07 proceeding

    Higher-Order Topological Insulators

    Get PDF
    Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional topological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is Z2\mathbb{Z}_2-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is Z\mathbb{Z}-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi2_2TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.Comment: 8 pages (4 figures) and 16 pages supplemental material (7 figures

    Casimir forces between arbitrary compact objects: Scalar and electromagnetic field

    Full text link
    We develop an exact method for computing the Casimir energy between arbitrary compact objects, both with boundary conditions for a scalar field and dielectrics or perfect conductors for the electromagnetic field. The energy is obtained as an interaction between multipoles, generated by quantum source or current fluctuations. The objects' shape and composition enter only through their scattering matrices. The result is exact when all multipoles are included, and converges rapidly. A low frequency expansion yields the energy as a series in the ratio of the objects' size to their separation. As examples, we obtain this series for two spheres with Robin boundary conditions for a scalar field and dielectric spheres for the electromagnetic field. The full interaction at all separations is obtained for spheres with Robin boundary conditions and for perfectly conducting spheres.Comment: 24 pages, 3 figures, contribution to QFEXT07 proceeding

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review

    Geometrical Constraints on the Cosmological Constant

    Full text link
    The cosmological constant problem is examined under the assumption that the extrinsic curvature of the space-time contributes to the vacuum. A compensation mechanism based on a variable cosmological term is proposed. Under a suitable hypothesis on the behavior of the extrinsic curvature, we find that an initially large Λ(t)\Lambda(t) rolls down rapidly to zero during the early stages of the universe. Using perturbation analysis, it is shown that such vacuum behaves essentially as a spin-2 field which is independent of the metric.Comment: [email protected], 17 pages, Latex, 2 figures obtained by reques

    Fluctuation induced quantum interactions between compact objects and a plane mirror

    Full text link
    The interaction of compact objects with an infinitely extended mirror plane due to quantum fluctuations of a scalar or electromagnetic field that scatters off the objects is studied. The mirror plane is assumed to obey either Dirichlet or Neumann boundary conditions or to be perfectly reflecting. Using the method of images, we generalize a recently developed approach for compact objects in unbounded space [1,2] to show that the Casimir interaction between the objects and the mirror plane can be accurately obtained over a wide range of separations in terms of charge and current fluctuations of the objects and their images. Our general result for the interaction depends only on the scattering matrices of the compact objects. It applies to scalar fields with arbitrary boundary conditions and to the electromagnetic field coupled to dielectric objects. For the experimentally important electromagnetic Casimir interaction between a perfectly conducting sphere and a plane mirror we present the first results that apply at all separations. We obtain both an asymptotic large distance expansion and the two lowest order correction terms to the proximity force approximation. The asymptotic Casimir-Polder potential for an atom and a mirror is generalized to describe the interaction between a dielectric sphere and a mirror, involving higher order multipole polarizabilities that are important at sub-asymptotic distances.Comment: 19 pages, 7 figure
    • …
    corecore