We consider a massless scalar field in 1+1 dimensions satisfying a Robin
boundary condition (BC) at a non-relativistic moving boundary. We derive a
Bogoliubov transformation between input and output bosonic field operators,
which allows us to calculate the spectral distribution of created particles.
The cases of Dirichlet and Neumann BC may be obtained from our result as
limiting cases. These two limits yield the same spectrum, which turns out to be
an upper bound for the spectra derived for Robin BC. We show that the particle
emission effect can be considerably reduced (with respect to the
Dirichlet/Neumann case) by selecting a particular value for the oscillation
frequency of the boundary position