6,798 research outputs found

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    Duality and interval analysis over idempotent semirings

    Get PDF
    In this paper semirings with an idempotent addition are considered. These algebraic structures are endowed with a partial order. This allows to consider residuated maps to solve systems of inequalities A⊗X⪯BA \otimes X \preceq B. The purpose of this paper is to consider a dual product, denoted ⊙\odot, and the dual residuation of matrices, in order to solve the following inequality A⊗X⪯X⪯B⊙X A \otimes X \preceq X \preceq B \odot X. Sufficient conditions ensuring the existence of a non-linear projector in the solution set are proposed. The results are extended to semirings of intervals

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review

    Mass distribution and structural parameters of Small Magellanic Cloud star clusters

    Full text link
    In this work we estimate, for the first time, the total masses and mass function slopes of a sample of 29 young and intermediate-age SMC clusters from CCD Washington photometry. We also derive age, interstellar reddening and structural parameters for most of the studied clusters by employing a statistical method to remove the unavoidable field star contamination. Only these 29 clusters out of 68 originally analysed cluster candidates present stellar overdensities and coherent distribution in their colour-magnitude diagrams compatible with the existence of a genuine star cluster. We employed simple stellar population models to derive general equations for estimating the cluster mass based only on its age and integrated light in the B, V, I, C and T1 filter. These equations were tested against mass values computed from luminosity functions, showing an excellent agreement. The sample contains clusters with ages between 60 Myr and 3 Gyr and masses between 300 and 3000 Mo distributed between ~0.5 deg. and ~2 deg. from the SMC optical centre. We determined mass function slopes for 24 clusters, of which 19 have slopes compatible with that of Kroupa IMF (2.3 +/- 0.7), considering the uncertainties. The remaining clusters - H86-188, H86-190, K47, K63 and NGC242 - showed flatter MFs. Additionally, only clusters with masses lower than ~1000 Mo and flatter MF were found within ~0.6 deg. from the SMC rotational centre.Comment: 12 pages, 19 figures. Includes another 29 full-page figures of supplementary material. Accepted for publication in the MNRA

    Future dynamics in f(R) theories

    Full text link
    The f(R)f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of f(R)f(R) gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of f(R)f(R) gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between f(R)f(R) gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two f(R)f(R) gravity theories, namely the well known f(R)=R+αRnf(R) = R + \alpha R^{n} gravity and another by A. Aviles et al., whose motivation comes from the cosmographic approach to f(R)f(R) gravity. To this end we perform a detailed numerical study of the future dynamic of these flat model in these theories taking into account the recent constraints on the cosmological parameters made by the Planck team. We show that besides being powerful for discriminating between f(R)f(R) gravity theories, the future dynamics technique can also be used to determine the fate of the Universe in the framework of these f(R)f(R) gravity theories. Moreover, there emerges from our numerical analysis that if we do not invoke a dark energy component with equation-of-state parameter ω<−1\omega < -1 one still has dust flat FLRW solution with a big rip, if gravity deviates from general relativity via f(R)=R+αRnf(R) = R + \alpha R^n . We also show that FLRW dust solutions with f′′<0f''<0 do not necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results are emphasized, connection with the recent literature improved, typos corrected, references adde

    Google Glass as a learning tool: sharing evaluation results for the role of optical head mounted displays in education

    Get PDF
    This paper provides an overview of the findings from an evaluation of the role of Google Glass in education over the past three years. The authors have experimented with Optical Head Mounted Displays as a support tool for various learning activities over the past few years. The study described in the paper commenced back in 2014 and continued despite the fact that the development of the Google Glass technology was paused and then shifted towards enterprise clientele. This was a result of our confidence that the future of learning interfaces is aligned to the proliferation of augmented reality and the fact that the Google Glass interface offers an ideal tool for learners due to its light structure and seamless wearing experience. The paper discusses how Google Glass has been used for a range of learning activities and describes the learners’ experiences from using the device. The main contribution of the paper is in the form of measuring the success of the specific interface by sharing the results of three years of evaluations. The evaluation results are further analysed taking under consideration a number of profiling techniques of the learners involved including their personality type and learning style

    Compressive Phase Contrast Tomography

    Full text link
    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. In- terference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher con- trast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).Comment: 5 pages, "Image Reconstruction from Incomplete Data VI" conference 7800, SPIE Optical Engineering + Applications 1-5 August 2010 San Diego, CA United State
    • …
    corecore