2,916 research outputs found

    Unequal Error Protected JPEG 2000 Broadcast Scheme with Progressive Fountain Codes

    Full text link
    This paper proposes a novel scheme, based on progressive fountain codes, for broadcasting JPEG 2000 multimedia. In such a broadcast scheme, progressive resolution levels of images/video have been unequally protected when transmitted using the proposed progressive fountain codes. With progressive fountain codes applied in the broadcast scheme, the resolutions of images (JPEG 2000) or videos (MJPEG 2000) received by different users can be automatically adaptive to their channel qualities, i.e. the users with good channel qualities are possible to receive the high resolution images/vedio while the users with bad channel qualities may receive low resolution images/vedio. Finally, the performance of the proposed scheme is evaluated with the MJPEG 2000 broadcast prototype

    Rateless Codes with Progressive Recovery for Layered Multimedia Delivery

    Full text link
    This paper proposes a novel approach, based on unequal error protection, to enhance rateless codes with progressive recovery for layered multimedia delivery. With a parallel encoding structure, the proposed Progressive Rateless codes (PRC) assign unequal redundancy to each layer in accordance with their importance. Each output symbol contains information from all layers, and thus the stream layers can be recovered progressively at the expected received ratios of output symbols. Furthermore, the dependency between layers is naturally considered. The performance of the PRC is evaluated and compared with some related UEP approaches. Results show that our PRC approach provides better recovery performance with lower overhead both theoretically and numerically

    Computing diffraction anomalies as nonlinear eigenvalue problems

    Full text link
    When a plane electromagnetic wave impinges upon a diffraction grating or other periodic structures, reflected and transmitted waves propagate away from the structure in different radiation channels. A diffraction anomaly occurs when the outgoing waves in one or more radiation channels vanish. Zero reflection, zero transmission and perfect absorption are important examples of diffraction anomalies, and they are useful for manipulating electromagnetic waves and light. Since diffraction anomalies appear only at specific frequencies and/or wavevectors, and may require the tuning of structural or material parameters, they are relatively difficult to find by standard numerical methods. Iterative methods may be used, but good initial guesses are required. To determine all diffraction anomalies in a given frequency interval, it is necessary to repeatedly solve the diffraction problem for many frequencies. In this paper, an efficient numerical method is developed for computing diffraction anomalies. The method relies on nonlinear eigenvalue formulations for scattering anomalies and solves the nonlinear eigenvalue problems by a contour-integral method. Numerical examples involving periodic arrays of cylinders are presented to illustrate the new method

    What Makes Natural Scene Memorable?

    Full text link
    Recent studies on image memorability have shed light on the visual features that make generic images, object images or face photographs memorable. However, a clear understanding and reliable estimation of natural scene memorability remain elusive. In this paper, we provide an attempt to answer: "what exactly makes natural scene memorable". Specifically, we first build LNSIM, a large-scale natural scene image memorability database (containing 2,632 images and memorability annotations). Then, we mine our database to investigate how low-, middle- and high-level handcrafted features affect the memorability of natural scene. In particular, we find that high-level feature of scene category is rather correlated with natural scene memorability. Thus, we propose a deep neural network based natural scene memorability (DeepNSM) predictor, which takes advantage of scene category. Finally, the experimental results validate the effectiveness of DeepNSM.Comment: Accepted to ACM MM Workshop
    • …
    corecore