25 research outputs found

    Potential Health Effects of Enzymatic Protein Hydrolysates from Chlorella vulgaris

    Get PDF
    Background and Objective: Chlorella vulgaris is a multi-cellular edible algal species with abundant proteins. Extraction of high value protein fractions for pharmaceutical and nutritional applications can significantly increase the commercial value of microalga biomasses. There is no known report on the anticancer peptides derived from the Chlorella vulgaris abundant protein.Materials and Methods: This study examined the antimicrobial and anticancer effects of peptides from a hydrolyzed Chlorella vulgaris protein with 62 kDa molecular weight. Protein hydrolysis was done by pepsin as a gastrointestinal protease, and was monitored through protein content measurement, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and high performance liquidchromatography measurements. Inhibitory effect of the produced peptides on Escherichia coli cells and breast cancer cell lines was assayed.Results and Conclusion: Hydrolyzed peptides induced a decrease of about 34.1% in the growth of Escherichia coli, and the peptides of 3 to 5 kDa molecular weight had strong impact on the viability of breast cancer cells with IC50 value of 50 μg μl-1. The peptide fractions demonstrating antimicrobial and anti-cancer activities have the potential for use as functional food ingredients for health benefits. These results demonstrate that inexpensive algae proteinscould be a new alternative to produce anticancer peptides.Conflict of interest: The authors declare that there is no conflict of interest

    Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications

    Get PDF
    Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.Peer reviewe

    Algae-Powered Buildings: A Review of an Innovative, Sustainable Approach in the Built Environment

    No full text
    Environmental pollution, global warming, energy consumption, and limited natural resources are some key factors from which today’s built environment faces interrelated problems and their management plays a vital role in sustainability. The building sector is involved in 35% of global energy usage and 40% of energy related CO2 emissions. Application of bioactive elements on buildings’ façades is a novel approach for solving the above-mentioned problems. Management of some important factors such as thermal comfort, energy efficiency, wastewater treatment, and CO2 capture is positively affected by bioactive façades because of their environmentally friendly nature. They also have positive effects on global warming, pollution control, social wealth, and sustainable development on a larger scale. The buildings integrated with photobioreactors (PBRs) can meet their thermal needs due to thermal insulation, shading, solar collection, and light-to-biomass conversion. Energy savings up to 30% are estimated to be met by PBR-integrated buildings due to reduced heating, cooling, ventilation, and lighting loads. The above amount of energy saving results in less CO2 emission. Moreover, the algae-integrated buildings can sequester CO2 with an average sequestration rate of 5 g/ft2/day when optimum growing environments and operation modes are implemented. This study is an overview of microalgae intervention and PBR-adapted buildings as an innovative approach for energy efficiency in the built environment with regard to implemented or speculative cases, pros and cons, challenges, and prospects

    Role of vitamin D3 in Treatment of Lumbar Disc Herniation—Pain and Sensory Aspects: Study Protocol for a Randomized Controlled Trial

    Get PDF
    BACKGROUND: Vitamin D receptors have been identified in the spinal cord, nerve roots, dorsal root ganglia and glial cells, and its genetic polymorphism association with the development of lumbar disc degeneration and herniation has been documented. Metabolic effects of active vitamin D metabolites in the nucleus pulposus and annulus fibrosus cells have been studied. Lumbar disc herniation is a process that involves immune and inflammatory cells and processes that are targets for immune regulatory actions of vitamin D as a neurosteroid hormone. In addition to vitamin D’s immune modulatory properties, its receptors have been identified in skeletal muscles. It also affects sensory neurons to modulate pain. In this study, we aim to study the role of vitamin D(3) in discogenic pain and related sensory deficits. Additionally, we will address how post-treatment 25-hydroxy vitamin D(3) level influences pain and sensory deficits severity. The cut-off value for serum 25-hydroxy vitamin D(3) that would be efficacious in improving pain and sensory deficits in lumbar disc herniation will also be studied. METHODS/DESIGN: We will conduct a randomized, placebo-controlled, double-blind clinical trial. Our study population will include 380 cases with one-level and unilateral lumbar disc herniation with duration of discogenic pain less than 8 weeks. Individuals who do not have any contraindications, will be divided into three groups based on serum 25-hydroxy vitamin D(3) level, and each group will be randomized to receive either a single-dose 300,000-IU intramuscular injection of vitamin D(3) or placebo. All patients will be under conservative treatment. Pre-treatment and post-treatment assessments will be performed with the McGill Pain Questionnaire and a visual analogue scale. For the 15-day duration of this study, questionnaires will be filled out during telephone interviews every 3 days (a total of five times). The initial and final interviews will be scheduled at our clinic. After 15 days, serum 25-hydroxy vitamin D(3) levels will be measured for those who have received vitamin D(3) (190 individuals). TRIAL REGISTRATION: Iranian Registry for Clinical Trials ID: IRCT2014050317534N1 (trial registration: 5 June 2014

    Isolation and identification of phytase-producing strains from soil samples and optimization of production parameters

    No full text
    Introduction:Phytase can be used as a feed additive to catalyze the hydrolytic degradation of phytate as the major storage form of natural phosphorus. Phytase is produced by a wide range of bacteria, fungi and yeasts. Isolation and identification of phytase-producing strains from soil, is of great interest for commercial application in different industries. The aim of the current study was the isolation and identification of phytase-producing strains from soil samples and optimizing the enzyme production. Materials and methods: For isolation and identification of phytase-producing strains, soil samples were collected from farms near Qazvin. Diluted samples were spread onto PSM solid media and production of the clear zones about the colonies gave a visual indication of phytase production. The selection of the best phytase-producing strain was performed by measuring the enzyme activity in the liquid medium. The selected strain was identified by slide-culture technique and the effect of carbon source (phytate and wheat bran), pH and time of incubation were also investigated for optimal enzyme production. Results: In this study, a Penicillium sp. was isolated from a soil sample near Qazvin and was selected as the best phytase-producing strain. The maximum phytase activity (171 U/ml) was obtained in the medium containing % 2 (w/v) phytate, at pH 5, after 72 h of incubation. By using wheat bran as the source of carbon and phytate, the maximum phytase activity, which was 61.7 U/mL, was produced at pH 7 and after the same time of incubation. Discussion and conclusion: Penicillium sp. isolated from a soil sample near Qazvin, was able to produce highly active phytase in optimized environmental conditions, which could be a suitable candidate for commercial production of phytase to be used as complement in poultry feeding industries

    Algae-Powered Buildings: A Review of an Innovative, Sustainable Approach in the Built Environment

    No full text
    Environmental pollution, global warming, energy consumption, and limited natural resources are some key factors from which today’s built environment faces interrelated problems and their management plays a vital role in sustainability. The building sector is involved in 35% of global energy usage and 40% of energy related CO2 emissions. Application of bioactive elements on buildings’ façades is a novel approach for solving the above-mentioned problems. Management of some important factors such as thermal comfort, energy efficiency, wastewater treatment, and CO2 capture is positively affected by bioactive façades because of their environmentally friendly nature. They also have positive effects on global warming, pollution control, social wealth, and sustainable development on a larger scale. The buildings integrated with photobioreactors (PBRs) can meet their thermal needs due to thermal insulation, shading, solar collection, and light-to-biomass conversion. Energy savings up to 30% are estimated to be met by PBR-integrated buildings due to reduced heating, cooling, ventilation, and lighting loads. The above amount of energy saving results in less CO2 emission. Moreover, the algae-integrated buildings can sequester CO2 with an average sequestration rate of 5 g/ft2/day when optimum growing environments and operation modes are implemented. This study is an overview of microalgae intervention and PBR-adapted buildings as an innovative approach for energy efficiency in the built environment with regard to implemented or speculative cases, pros and cons, challenges, and prospects

    Green Synthesis of Silver Nanoparticles by Hypericum perforatum extract and Berberine and Evaluation of Their Antibacterial Effects(Original Article)

    No full text
    Background: Bacterial infections are a major cause of chronic infections and mortality, and antibiotics are the preferred treatment for bacterial infections. However, studies show that widespread use of antibiotics has led to the emergence of multidrug-resistant bacterial strains. Hence, the need to develop new and alternative strategies for the production of effective drugs has become an important issue. Recently, the use of nanotechnology has been widely common in various fields. Materials in the nanoscale have unique physical and chemical properties. Silver nanoparticles have different applications and their antimicrobial properties have been confirmed in several studies. This study aimed to investigate the antibacterial properties of silver nanoparticles synthesized by berberine and Hypericum perforatum extract. Methods: In this experimental study, the antibacterial effects of synthesized nanoparticles on standard strains of Escherichia coli [ATCC 25922], Pseudomonas aeruginosa [ATCC 27853], Klebsiella pneumoniae [ATCC 9997], and Staphylococcus aureus [ATCC 29212] were investigated. The MIC content of silver nanoparticles alone and in combination with berberine and Hypericum perforatum extract was investigated for the studied bacteria using the broth microdilution method. Results: The results of the evaluation of the minimum inhibitory concentration [MIC] of the synthesized compounds on the studied bacteria showed that the nanoparticles synthesized by berberine and Hypericum perforatum extract had the highest antibacterial effects. However, each of the compounds Berberine and Hypericum perforatum extract alone did not show significant antibacterial properties. The results of this study also showed that the highest inhibitory concentration of nanoparticles synthesized by berberine and Hypericum perforatum extract was related to Pseudomonas aeruginosa [0.0375 mg / ml] and the lowest inhibitory concentration was related to Enterococcus faecalis [0.185 mg/ml]. Conclusions: The results of the present study showed that silver nanoparticles synthesized with berberine and Hypericum perforatum extract have significant antibacterial effects. As a result, nanoparticles, including silver nanoparticles, can become one of the most important alternatives to antibiotics due to their unique properties in targeting bacteria. However, achieving definitive results requires further studies in this area

    Effect of mixed culture of yeast and microalgae on acetyl-CoA carboxylase and Glycerol-3-phosphate acyltransferase expression

    No full text
    International audienceIn recent years, some studies have reported that co-culturing green algae and yeast improve lipid and biomass concentration. In this study, a co-culture of the oleaginous yeast Rhodotorula glutinis and the microalgae Chlorella vulgaris was consequently conducted with inoculation of microalga and yeast in growth and stationary phases, respectively. For the first time, the expression of two pivotal enzymes in fatty acids synthetic pathway, acetyl-CoA carboxylase and Glycerol-3-phosphate acyltransferase, was evaluated. To evaluate the synergistic impacts of the mixed culture on the enzymes expression, several co-culture models were designed, including the use of different ratio of microalgae to yeast or the use of residual cell-free medium of yeast; a positive impact on enzymes overexpression was shown in the case of the co-culture of the two microorganisms, and when the remaining cell-free medium of yeast was added to the microalgal culture. The results of in vitro co-culture demonstrated increased 6- and 5-fold of nervonic acid (C24:1) and behenic acid (C22:0) concentrations, respectively, in 2:1 microalgae to yeast co-culture as compared to the monoculture batches. Addition of yeast residual cell-free medium in the 2:1 ratio to the microalgal culture enhanced 9 and 6 times nervonic acid (C24:1) and behenic acid (C22:0) amounts, respectively

    Evaluation of Oogenesis Aspects in Neonatal and Adult Mice after Toloaldoxime Treatment

    No full text
    Objective: Oximes are important materials in organic chemistry. Synparamethyl benzaldehyde oxime (toloaldoxime) is structurally similar to other oximes, hence we have studied its effects on the neonatal and adult female Balb/c mice reproductive systems in order to provide a platform for future studies on the production of female contraceptive drugs. Materials and Methods: In experimental study, we studied the effects of toloaldoxime on ovary growth and gonadal hormones of neonatal and adult Balb/c mice. A regression model for prediction was presented. Results: The effects of toloaldoxime on neonatal mice were more than adult mice. The greatest effect was on the number of Graafian follicles (59.6% in adult mice and 31.83% in neonatal mice). The least effect was on ovary weight, and blood serum levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH). Conclusion: According to the data obtained, toloaldoxime can be considered an antipregnancy substance
    corecore