5 research outputs found

    Recent progress on nanostructured 4 v cathode materials for Li-ion batteries for mobile electronics

    Get PDF
    Mobile electronics have developed so rapidly that battery technology has hardly been able to keep pace. The increasing desire for lighter and thinner Li-ion batteries with higher capacities is a continuing and constant goal for in research. Achieving higher energy densities, which is mainly dependent on cathode materials, has become a critical issue in the development of new Li-ion batteries. In this review, we will outline the progress on nanostructured 4 V cathode materials of Li-ion batteries for mobile electronics, covering LiCoO2, LiNixCoyMn1-x-yO 2, LiMn2O4, LiNi0.5Mn 1.5O4 and Li-rich layered oxide materials. We aim to provide some scientific insights into the development of superior cathode materials by discussing the advantages of nanostructure, surface-coating, and other key properties.open2

    Multilayer electrolyte cell: A new tool for identifying electrochemical performances of high voltage cathode materials

    No full text
    Multilayer electrolyte cell (MEC) was designed and developed as a new tool for investigating electrode/electrolyte interfacial reactions in a battery system. The MEC consists of two liquid electrolytes separated by a solid electrolyte which prevents electrolyte crossover while selectively transporting Li+ ions. The MEC successfully reproduced the performance of LiFePO4 comparable with that obtained from coin cells. In addition, the origin of capacity fading in LiNi0.5Mn1.5O 4full-cell (with graphite negative electrode) was studied using the MEC. The performance of LiNi0.5Mn1.5O4 MEC full-cell was superior to that of coin full-cell by eliminating the Mn dissolution problem on graphite negative electrode as evidenced by transmission electron microscopyanalysis. The MEC can be a strong tool for identifying the electrochemical performances of future high voltage positive electrode materials and their electrode/electrolyte interfacial reactions.close15
    corecore