44 research outputs found

    Danicamtiv increases myosin recruitment and alters cross-bridge cycling in cardiac muscle

    Get PDF
    Background: Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. Methods: Permeabilized porcine cardiac tissue and myofibrils were used for X-ray diffraction and mechanical measurements. A mouse model of genetic dilated cardiomyopathy was used to evaluate the ability of danicamtiv to correct the contractile deficient. Results: Danicamtiv increased force and calcium sensitivity via increasing the number of myosins in the on state and slowing cross-bridge turnover. Our detailed analysis showed that inhibition of ADP release results in decreased cross-bridge turnover with cross bridges staying attached longer and prolonging myofibril relaxation. Danicamtiv corrected decreased calcium sensitivity in demembranated tissue, abnormal twitch magnitude and kinetics in intact cardiac tissue, and reduced ejection fraction in the whole organ. Conclusions: As demonstrated by the detailed studies of Danicamtiv, increasing myosin recruitment and altering crossbridge cycling are 2 mechanisms to increase force and calcium sensitivity in cardiac muscle. Myosin activators such as Danicamtiv can treat the causative hypocontractile phenotype in genetic dilated cardiomyopath

    Nitric oxide modification of rat brain neurogranin affects its phosphorylation by protein kinase C and affinity for calmodulin

    No full text
    Neurogranin (Ng) is a prominent protein kinase C (PKC) substrate which binds calmodulin (CAM) in the absence of Ca<sup>2+</sup>. Rat brain Ng contains four cysteine residues that were readily oxidized by nitric oxide (NO) donors, 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEANO) and sodium nitroprusside, and by oxidants, H<sub>2</sub>O<sub>2</sub> and o-iodosobenzoic acid. NO oxidation of Ng resulted in a conformational change detectable by increased electrophoretic mobility upon SDS-polyacrylamide gel electrophoresis. The NO-mediated mobility shift was reversed by treatment with dithiothreitol and was blocked by modification of Ng sulfhydryl groups with 4-vinylpyridine. Both the nonphosphorylated and PKC-phosphorylated Ng were susceptible to NO oxidation. Modification of Ng by DEANO was blocked by CaM in the absence of Ca<sup>2+</sup>; while in the presence of Ca<sup>2+</sup>, CaM did not protect Ng from oxidation by DEANO. CaM also failed to protect DEANO-mediated oxidation of PKC-phosphorylated Ng with or without Ca<sup>2+</sup>. Oxidation of Ng by the various oxidants apparently resulted in the formation of intramolecular disulfide bond(s) as judged by a reduction of apparent M(r) on SDS-polyacrylamide gel electrophoresis; this oxidized form, unlike the reduced form, did not bind to CaM-affinity column. The oxidized Ng was also a poorer substrate for PKC; both the reduced and oxidized forms had similar K(m) values, but the V(max) of the oxidized form was about one- fourth of the reduced one. When comparing the rate of DEANO-mediated nitrosation of Ng with other sulfhydryl-containing compounds, it became evident that Ng ranked as one of the best NO acceptors among those tested, including serum albumin, glutathione, and dithiothreitol. Ng present in the rat brain synaptosomal preparations was also oxidized by DEANO in a dose- dependent manner when analyzed by immunoblot with a polyclonal antibody against this protein. These results suggest that Ng is a likely target of NO and other oxidants and that oxidation/reduction may serve as a mechanism for controlling both the PKC phosphorylation and the CaM-binding affinity of this protein
    corecore