304 research outputs found

    Human Genotyping and An Experimental Model Reveal NPR-C as A Possible Contributor to Morbidity In Coarctation Of The Aorta

    Get PDF
    Coarctation of the aorta (CoA) is a common congenital cardiovascular (CV) defect characterized by a stenosis of the descending thoracic aorta. Treatment exists, but many patients develop hypertension (HTN). Identifying the cause of HTN is challenging because of patient variability (e.g., age, follow-up duration, severity) and concurrent CV abnormalities. Our objective was to conduct RNA sequencing of aortic tissue from humans with CoA to identify a candidate gene for mechanistic studies of arterial dysfunction in a rabbit model of CoA devoid of the variability seen with humans. We present the first known evidence of natriuretic peptide receptor C (NPR-C; aka NPR3) downregulation in human aortic sections subjected to high blood pressure (BP) from CoA versus normal BP regions (validated to PCR). These changes in NPR-C, a gene associated with BP and proliferation, were replicated in the rabbit model of CoA. Artery segments from this model were used with human aortic endothelial cells to reveal the functional relevance of altered NPR-C activity. Results showed decreased intracellular calcium ([Ca2+]i) activity to C-type natriuretic peptide (CNP). Normal relaxation induced by CNP and atrial natriuretic peptide was impaired for aortic segments exposed to elevated BP from CoA. Inhibition of NPR-C (M372049) also impaired aortic relaxation and [Ca2+]i activity. Genotyping of NPR-Cvariants predicted to be damaging revealed that rs146301345 was enriched in our CoA patients, but sample size limited association with HTN. These results may ultimately be used to tailor treatment for CoA based on mechanical stimuli, genotyping, and/or changes in arterial function

    Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cell

    Get PDF
    The T cell compartment is phenotypically and functionally heterogeneous; subsets of naive and memory cells have different functional properties, and also differ with respect to homeostatic potential and the ability to persist in vivo. Human stem cell memory T (TSCM) cells, which possess superior immune reconstitution and antitumor response capabilities, can be identified by polychromatic flow cytometry on the basis of the simultaneous expression of several naive markers together with the memory marker CD95. We describe here a protocol based on the minimum set of markers required for optimal identification of human and nonhuman primate (NHP) TSCM cells with commonly available flow cytometers. By using flow sorters, TSCM cells can thereby be isolated efficiently at high yield and purity. With the use of the 5.5-h isolation procedure, depending on the number of cells needed, the sorting procedure can last for 2-15 h. We also indicate multiple strategies for their efficient expansion in vitro at consistent numbers for functional characterization or adoptive transfer experiments

    Suppressive Effects on the Immune Response and Protective Immunity to a JEV DNA Vaccine by Co-administration of a GM-CSF-Expressing Plasmid in Mice

    Get PDF
    As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF

    Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent evidence suggests that CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+ </sup>regulatory T-cells (Treg) may be responsible for the failure of host anti-tumour immunity by suppressing cytotoxic T- cells. We assessed the prognostic significance of tumour infiltrating lymphocytes (TIL) in intestinal-type gastric cardiac cancer.</p> <p>Methods</p> <p>Tumour infiltrating lymphocyte (TIL) subsets and tumour infiltrating macrophages (TIM) were investigated in 52 cases using tissue microarrays. The interrelationship between the cell populations (CD3+, CD8+, CD20+, CD68+, GranzymeB+, FoxP3+) in different compartments and NED-survival was investigated (median follow-up time: 61 months).</p> <p>Results</p> <p>Intraepithelial infiltration with TIL and TIM including Treg was generally low and not related to NED-survival. However, patients with large numbers of FoxP3<sup>+ </sup>Treg in the tumour stroma (>125.9 FoxP3<sup>+</sup>TILs/mm<sup>2</sup>) had a median survival time of 58 months while those with low FoxP3<sup>+ </sup>TIL counts (<125.9 FoxP3<sup>+</sup>TILs/mm<sup>2</sup>) had a median survival time of 32 months (p = 0.006). Patients with high versus low stromal CD68<sup>+</sup>/FoxP3<sup>+ </sup>cell ratios in primary tumour displayed median survivals of 32 and 55 months, respectively (p = 0.008).</p> <p>Conclusion</p> <p>Our results suggest that inflammatory processes within the tumour stroma of gastric intestinal-type adenocarcinomas located at the gastric cardia may affect outcome in two ways. Tumour-infiltrating macrophages are likely to promote carcinogenesis while large numbers of Treg are associated with improved outcome probably by inhibiting local inflammatory processes promoting carcinogenesis. Thus, inhibition of Treg may not be a feasible treatment option in gastric adenocarcinoma.</p

    IT Outsourcing in Finnish Business

    Full text link
    This paper reviews the characteristics and magnitude of information technology (IT) outsourcing as well as studies its labor productivity effects with a representative sample of Finnish businesses. Depending on the IT task in question, on average from one-third to two-thirds of IT has been outsourced; of the ten categories considered, the development of non-Internet business-to-business applications (e.g., EDI) is the leading activity in this respect. The various dimensions of IT outsourcing are all highly positively correlated. After controlling for industry and regional effects as well as characteristics of firms and their employees, it is found that an externally-supported computer user is about 20% more productive than an otherwise similar worker without a computer, which corresponds to about 5% output elasticity of outsourced IT; the effect of internally-supported computer use is not statistically significantly different for zero, and it is also several times smaller in magnitude. While the issues of causality, timing, self-selection, and unobserved firm heterogeneity are not fully addressed, the findings nevertheless suggest that IT outsourcing may have significant economic consequences

    Acute Inhibition of Selected Membrane-Proximal Mouse T Cell Receptor Signaling by Mitochondrial Antagonists

    Get PDF
    T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide/major histocompatibility complex (MHC) plus lymphocyte function-associated antigen 1 (LFA-1) with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS) platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour) with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin), resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s). Thus, activation of Akt and PLC-γ1 and entry of extracellular Ca2+ following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption) could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours) on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function

    The Tissue Microlocalisation and Cellular Expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 Is Correlated to Clinical Outcome in NSCLC

    Get PDF
    BACKGROUND: We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC. METHODS: Using immunohistochemistry, CD68(+) macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months). RESULTS: The NM expression of NM-HLA-DR (p<0.001), NM-iNOS (p = 0.02) and NM-MRP 8/14 (p = 0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001). There was more NM-CD163 expression (p = 0.04) but less NM-iNOS (p = 0.002) and MRP 8/14 (p = 0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001), 65.0% versus 14.6% (NM-iNOS p = 0.003), and 54.3% versus 22.2% (NM-MRP 8/14 p = 0.04), as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41) and 19.4% versus 59.0% (NM-VEGF p = 0.001). CONCLUSIONS: Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome

    Superior antigen-specific CD4+ T-cell response with AS03-adjuvantation of a trivalent influenza vaccine in a randomised trial of adults aged 65 and older

    Get PDF
    BACKGROUND: The effectiveness of trivalent influenza vaccines may be reduced in older versus younger adults because of age-related immunosenescence. The use of an adjuvant in such a vaccine is one strategy that may combat immunosenescence, potentially by bolstering T-cell mediated responses. METHODS: This observer-blind study, conducted in the United States (US) and Spain during the 2008-2009 influenza season, evaluated the effect of Adjuvant System AS03 on specific T-cell responses to a seasonal trivalent influenza vaccine (TIV) in >/=65 year-old adults.Medically-stable adults aged >/=65 years were randomly allocated to receive a single dose of AS03-adjuvanted TIV (TIV/AS03) or TIV. Healthy adults aged 18-40 years received only TIV. Blood samples were collected on Day 0, Day 21, Day 42 and Day 180. Influenza-specific CD4+ T cells, defined by the induction of the immune markers CD40L, IL-2, IFN-gamma, or TNF-alpha, were measured in ex vivo cultures of antigen-stimulated peripheral blood mononuclear cells. RESULTS: A total of 192 adults were vaccinated: sixty nine and seventy three >/=65 year olds received TIV/AS03 and TIV, respectively; and fifty 18 - 40 year olds received TIV. In the >/=65 year-old group on Day 21, the frequency of CD4+ T cells specific to the three vaccine strains was superior in the TIV/AS03 recipients to the frequency in TIV (p /=65 year-old recipients of TIV/AS03 than in the 18 - 40 year old recipients of TIV on Days 21 (p = 0.006) and 42 (p = 0.011). CONCLUSION: This positive effect of AS03 Adjuvant System on the CD4+ T-cell response to influenza vaccine strains in older adults could confer benefit in protection against clinical influenza disease in this population. TRIAL REGISTRATION: (Clinicaltrials.gov.). NCT00765076

    Enhancement of Tumour-Specific Immune Responses In Vivo by ‘MHC Loading-Enhancer’ (MLE)

    Get PDF
    BACKGROUND:Class II MHC molecules (MHC II) are cell surface receptors displaying short protein fragments for the surveillance by CD4+ T cells. Antigens therefore have to be loaded onto this receptor in order to induce productive immune responses. On the cell surface, most MHC II molecules are either occupied by ligands or their binding cleft has been blocked by the acquisition of a non-receptive state. Direct loading with antigens, as required during peptide vaccinations, is therefore hindered. PRINCIPAL FINDINGS:Here we show, that the in vivo response of CD4+ T cells can be improved, when the antigens are administered together with 'MHC-loading enhancer' (MLE). MLE are small catalytic compounds able to open up the MHC binding site by triggering ligand-release and stabilizing the receptive state. Their enhancing effect on the immune response was demonstrated here with an antigen from the influenza virus and tumour associated antigens (TAA) derived from the NY-ESO-1 protein. The application of these antigens in combination with adamantane ethanol (AdEtOH), an MLE compound active on human HLA-DR molecules, significantly increased the frequency of antigen-specific CD4+ T cells in mice transgenic for the human MHC II molecule. Notably, the effect was evident only with the MLE-susceptible HLA-DR molecule and not with murine MHC II molecules non-susceptible for the catalytic effect of the MLE. CONCLUSION:MLE can specifically increase the potency of a vaccine by facilitating the efficient transfer of the antigen onto the MHC molecule. They may therefore open a new way to improve vaccination efficacy and tumour-immunotherapy
    corecore