9 research outputs found

    CFD Analysis of Petrol Internal Combustion Engine

    Get PDF
    ان التشغيل الامثل لمحركات الاحتراق الداخلي يتطلب تطبيقات لتقنيات ضرورية متقدمة بالاضافة الى طرق عملية، ان استخدام التحليل العددي ثلاثي الابعاد يوفر امكانية الحصول على رؤية ثاقبه للظواهر الفيزيائية المعقده داخل المحرك. في هذا البحث، تم نمذجة جريان المائع داخل محرك احتراق بالشرر رباعي الاشواط احادي الاسطوانه نوع هونداي بالأعتماد على التحليل العددي بأستخدام كود ANSYS /ICE، مع تقنية الشبكة الديناميكية لدراسة وتخمين خواص الجريان لوقود الاوكتان عند ظروف التشغيل الطبيعيه وفقاً لزوايا عمود المرفق عند سرعة دوران ثابته. تم أنجاز موديل المحرك بأستخدام بيئة SolidWorks. ركز هذا العمل على تحليل الأشواط الاربعة للمحرك في حالة التشغيل (البارد والاحتراق) متضمناً معادلات الاستمرارية ورينولدز ونافير ستوك ومعادلة حفظ الطاقه. قورن هذا البحث مع الابحاث المنشورة وأظهرت المقارنه مطابقة النتائج، وكان الحد الاقصى للتناقض17 %.Optimizing operation for internal combustion engines requires the application of advanced essential technique. Moreover, an experimental investigation, numerical 3D CFD simulation, is needed in order to obtain and investigate a vision into the complex phenomena’s within cylinder. In this paper, fluid flow inside a single cylinder of spark ignition engine (SI) Hyundai type was modeled depending on the numerical simulation using ANSYS V15.0/ICE CODE, with dynamic mesh technique to study and estimate the characteristics flow under normal operation of octane fuel with respect to crank angle at a constant r.p.m. The engine model was done by SolidWorks environment. This work focused on the simulation of the intake, compression, expansion and exhaust stroke, including cold and combustion simulation, solving the governing equations (continuity, Renolds Average Navier Stoke, and energy equation). The code was validated against published data for present case, and the comparison showed a close agreement between the results and the maximum discrepancy was 17 %

    Experimental Investigations on Combustion Pollutant Emissions of Sunflower Biodiesel and Its Blends with Diesel and Kerosene for Furnace Application

    Get PDF
    وقود الديزل الحيوي هو أحد أنواع الوقود البديلة الواعدة التي تستخدم في السيارات وتوربينات الغاز والأفران. في هذه الدراسة، تم تجريبيا اختبار وقود الديزل الحيوي وخلائطه (الديزل الحيوي-الديزل (Bx) ووقود الديزل الحيوي-كيروسين (Bkx)) باستخدام منظومة الاحتراق (البيرنر) المصنع للبحث. حيث تمت التجارب باستخدام مرذذ وقود نوع (airblast atomizer) وذلك للتحقق من خواص عملية الاحتراق خلال التجارب. تم اجراء التجارب ولجميع انواع الوقود عند قدرة 12.2 كيلو واط عند نسبة ترذيذ ثابته ALR=1 ودرجة حرارة 301K ولقيم نسب تكافؤ (0.6 الى 1.4). تم قياس الانبعاثات الناتجة عن عملية الاحتراق مثل CO2 وCO وNOx وUbH باستخدام محلل الانبعاثات Gas analyzer، حيث اظهرت النتائج ان الملوثات الرئيسية مثل CO2 وCO وUbH تنخفض بزيادة نسبة الوقود الحيوي (biodiesel) لزهرة عباد الشمس (SME)، كما انخفضت اكاسيد النتروجين المنبعثة. لذلك وحسب النتائج والاستنتاجات فان وقود الديزل الحيوي يمكن ان يكون بديلا جيدا للوقود الاحفوري.Biodiesel is one of the promising substitution fuels that are used in cars, gas turbine and furnace. In this study, the experiments liquid fuels used during the tests are biodiesel and its blends (biodiesel-diesel (Bx) and biodiesel-kerosene (Bkx)) in a furnace have been studied experimentally. An airblast atomizer was used to investigate the combustion properties. During the experiments, the heat rate is (12.2kW), the atomization-air to liquid fuel ratio (ALR = 1) and the constant air temperature is (301K) were maintained. For the range of equivalence ratio from 0.6 to 1.4, the characteristics of emission factors such as carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx) and unburned hydrocarbons (UbH) were measured experimentally. The results observed that the main pollutants such as CO2, CO, UbH were decreased with an increase in SME, while NOx emissions also decreased .Biodiesel could be a promising fuel for furnaces instead of fossil fuels

    NATURAL CONVECTION HEAT TRANSFER IN AN INCLINED CIRCULAR CYLINDER

    Get PDF
    Experiments were carried out to investigate natural convection heat transfer in an inclined uniformly heated circular cylinder . The effects of surface heat flux and angle of inclination on the temperature and local Nusselt number variations along the cylinder surface are discussed . The investigation covers heat flux range from 92 W/m² to 487 W/m², and angles of inclination 0° ( horizontal) , 30° , 60° and 90° (vertical) . Results show an increase in the natural convection as heat flux increases and as angle of inclination moves from vertical to horizontal position. An empirical equation of average Nusselt number as a function of Rayliegh number was deduced for each angle of inclination

    The Effect of Ceramic Coating on Performance and Emission of Diesel Engine Operated on Diesel Fuel and Biodiesel Blends

    Get PDF
    In this work, the effect of ceramic coating on performance, exhaust gas temperature and gases emissions of diesel engine operated on diesel fuel and biodiesel blends was investigated. A conventional four stroke, direct injected, single cylinder, diesel engine was tested at constant speed and at different load conditions using diesel fuel and biodiesel blends. The inlet and exhaust valves, the head of piston and cylinder head of the engine were coated by ceramic materials. Ceramic layers were made of (210-240) μm of Al2O3 and (30-60) μm of 4NiCr5Al as a bond coat for inlet and exhaust valves and (350-400) μm of YSZ and (50-100) μm of 4NiCr5Al as a bond coat for head of piston and (280-320) μm of Sic and (40-80) μm of 4NiCr5Al as a bond coat for cylinder head. The coating technique adapted in this work is the flame spray method. The engine with valves, piston and cylinder head ceramic coated research was tested for the same operation conditions of the engine (without coating). The results showed that a reduction in brake specific fuel consumption of 19.29%, 15.91%, 14.65% and 7.06%, an increase in brake thermal efficiency of 23.68%, 19.77%, 16.51% and 6.32%, the increase in exhaust gas temperature of 9.01%, 7.22%, 15.7% and 11.42%, the reduction of CO emission of 18.57%, 20%, 20.5% and 27.77%, the reduction of HC emission of 28.97%, 43.9%, 38.88% and 36.41% for diesel, B5,B10 and B100 respectively

    Analysis of Flow Characteristics In Inlet And Exhaust Manifolds of Experimental Gasoline Combustion In A VCR Engine

    Get PDF
    In the present work, an approach to estimate of flow characteristic in inlet andexhaust manifolds of internal combustion engines is performed using a four-strokevariable compression ratio single cylinder gasoline engine.In the theoretical part a computer simulations of the flow field in the intakeand exhaust systems as well as the cylinder cavity for the experimental dataobtained in the gas exchange cycle program using the method of characteristics forthe engine dimensions and timings used in the experimental study as well as thedata obtained from the gas exchange cycle program for the sake of comparisonand presentation of flow characteristic.In the experimental work, the compression ratio was varied from 7 to 11 atvariable speed with constant throttle opening, where engine performance wasobtained.Results of engine performance as well as pressure, temperature and velocityfields in the intake and exhaust systems obtained by the gas exchange cycleprogram using the method of characteristics are presented

    Аналіз нестаціонарної змішаної конвекції в горизонтальному каналі, частково нагрітому знизу

    Get PDF
    The heat convection phenomenon has been investigated numerically (mathematically) for a channel located horizontally and partially heated at a uniform heat flux with forced and free heat convection. The investigated horizontal channel with a fluid inlet and the enclosure was exposed to the heat source from the bottom while the channel upper side was kept with a constant temperature equal to fluid outlet temperature. Transient, laminar, incompressible and mixed convective flow is assumed within the channel. Therefore, the flow field is estimated using Navier Stokes equations, which involves the Boussinesq approximation. While the temperature field is calculated using the standard energy model, where, Re, Pr, Ri are Reynolds number, Prandtl number, and Richardson number, respectively. Reynolds number (Re) was changed during the test from 1 to 50 (1, 10, 25, and 50) for each case study, Richardson (Ri) number was changed during the test from 1 to 25 (1, 5, 10, 15, 20, and, 25). The average Nusselt number (Nuav) increases exponentially with the Reynold number for each Richardson number and the local Nusselt number (NuI) rises in the heating point. Then gradually stabilized until reaching the endpoint of the channel while the local Nusselt number increases with a decrease in the Reynolds number over there. In addition, the streamlines and isotherms patterns in case of the very low value of the Reynolds number indicate very low convective heat transfer with all values of Richardson number. Furthermore, near the heat source, the fluid flow rate rise increases the convection heat transfer that clarified the Nusselt number behavior with Reynolds number indicating that maximum Nu No. are 6, 12, 27 and 31 for Re No. 1, 10, 25 and 50, respectivelyЯвление тепловой конвекции было исследовано численно (математически) для канала, расположенного горизонтально и частично нагретого при равномерном тепловом потоке с принудительной и свободной тепловой конвекцией. Исследуемый горизонтальный канал с впускным отверстием для жидкости и оболочкой подвергался воздействию источника тепла снизу, в то время как на верхней стороне канала поддерживалась постоянная температура, равная температуре жидкости на выходе. В канале предполагается нестационарный, ламинарный, несжимаемый и смешанный конвективный поток. Поэтому поле потока оценивается с помощью уравнений Навье-Стокса, которые включают приближение Буссинеска. При этом температурное поле рассчитывается с использованием стандартной энергетической модели, где Re, Pr, Ri – число Рейнольдса, число Прандтля и число Ричардсона соответственно. Число Рейнольдса (Re) варьировалось во время испытаний от 1 до 50 (1, 10, 25 и 50) для каждого конкретного случая, число Ричардсона (Ri) изменялось от 1 до 25 (1, 5, 10, 15, 20, и 25). Среднее число Нуссельта (Nuav) увеличивается экспоненциально с увеличением числа Рейнольдса для каждого числа Ричардсона, локальное число Нуссельта (NuI) возрастает в точке нагрева. Затем постепенно стабилизируется до достижения конечной точки канала, в то время как локальное число Нуссельта увеличивается с уменьшением числа Рейнольдса. Кроме того, линии тока и изотермы в случае очень низкого значения числа Рейнольдса указывают на очень низкую конвективную теплопередачу при всех значениях числа Ричардсона. Более того, вблизи источника тепла увеличение скорости потока жидкости увеличивает конвективную теплопередачу, что объясняет поведение числа Нуссельта с числом Рейнольдса, указывающим, что максимальное значение числа Nu равно 6, 12, 27 и 31 при значениях числа Re 1, 10, 25 и 50 соответственноЯвище теплової конвекції було досліджено чисельно (математично) для каналу, розташованого горизонтально і частково нагрітого при рівномірному тепловому потоці з примусовою і вільною тепловою конвекцією. Досліджуваний горизонтальний канал з впускним отвором для рідини і оболонкою піддавався впливу джерела тепла знизу, в той час як на верхній стороні каналу підтримувалася постійна температура, рівна температурі рідини на виході. У каналі передбачається нестаціонарний, ламінарний, нестисливий і змішаний конвективний потік. Тому поле потоку оцінюється за допомогою рівнянь Нав'є-Стокса, які включають наближення Буссінеска. При цьому температурне поле розраховується з використанням стандартної енергетичної моделі, де Re, Pr, Ri – число Рейнольдса, число Прандтля і число Річардсона відповідно. Число Рейнольдса (Re) варіювалося під час випробувань від 1 до 50 (1, 10, 25 і 50) для кожного конкретного випадку, число Річардсона (Ri) змінювалося від 1 до 25 (1, 5, 10, 15, 20, і 25). Середнє число Нуссельта (Nuav) збільшується експоненціально зі збільшенням числа Рейнольдса для кожного числа Річардсона, локальне число Нуссельта (NuI) зростає в точці нагріву. Потім поступово стабілізується до досягнення кінцевої точки каналу, в той час як локальне число Нуссельта збільшується зі зменшенням числа Рейнольдса. Крім того, лінії течії і ізотерми у випадку дуже низького значення числа Рейнольдса вказують на дуже низьку конвективну теплопередачу при всіх значеннях числа Річардсона. Більш того, поблизу джерела тепла збільшення швидкості потоку рідини збільшує конвективну теплопередачу, що пояснює поведінку числа Нуссельта з числом Рейнольдса, що вказує на те, що максимальне значення числа Nu дорівнює 6, 12, 27 і 31 при значеннях числа Re 1, 10, 25 і 50 відповідн

    EXPERIMENTAL STUDY OF KEROSENE ADDITIVE TO WASTE OIL BIODIESEL FOR USING AS ALTERNATIVE DIESEL FUEL

    No full text
    The biodiesel used in this paper is produced by using transesterification reaction between waste oil and methanol to reduce the cost, using NaoH as catalyst , a blending of kerosene and biodiesel were carried out to investigate their properties characterization of the biodiesel blends with kerosene were (density, viscosity, flash point, pour point, cloud point, cetane index). Biodiesel blends with kerosene in proportion at (5:95, 15:85, 25:75, 35:65, 50:50). The results showed, the blending of biodiesel with kerosene enhanced the requirement of this fuel as a substituted of diesel fuel, kerosene can play a role to reduce the flash point and viscosity and reduce the characteristics of cold flow properties of biodiesel and suitable fuel for air blast atomizer burner

    Enhancement of Energy Transfer Efficiency for Photovoltaic (PV) Systems by Cooling the Panel Surfaces

    Full text link
    The thermal coefficient of a solar photovoltaic (PV) panel is a value that is provided with its specification sheet and tells us precisely the drop in panel performance with rising temperature. In desert climates, the PV panel temperatures are known to reach above 70 degrees centigrade. Exploring effective methods of increasing energy transfer efficiency is the issue that attracts researchers nowadays, which also contributes to reducing the cost of using solar photovoltaic (PV) systems with storage batteries. Temperature handling of solar PV modules is one of the techniques that improve the performance of such systems by cooling the bottom surface of the PV panels. This study initially reviews the effective methods of cooling the solar modules to select a proper, cost-effective, and easy to implement one. An active fan-based cooling method is considered in this research to make ventilation underneath the solar module. A portion of the output power at a prespecified high level of battery state-of-charge (SOC) is used to feed the fans. The developed comparator circuit is used to control the power ON/OFF of the fans. A Matlab-based simulation is employed to demonstrate the power rate improvements and that consumed by the fans. The results of simulations show that the presented approach can achieve significant improvements in the efficiency of PV systems that have storage batteries. The proposed method is demonstrated and evaluated for a 1.62 kW PV system. It is found from a simultaneous practical experiment on two identical PV panels of 180 W over a full day that the energy with the cooling system was 823.4 Wh, while that without cooling was 676 Wh. The adopted approach can play a role in enhancing energy sustainability

    Enhancement of Energy Transfer Efficiency for Photovoltaic (PV) Systems by Cooling the Panel Surfaces

    Full text link
    The thermal coefficient of a solar photovoltaic (PV) panel is a value that is provided with its specification sheet and tells us precisely the drop in panel performance with rising temperature. In desert climates, the PV panel temperatures are known to reach above 70 degrees centigrade. Exploring effective methods of increasing energy transfer efficiency is the issue that attracts researchers nowadays, which also contributes to reducing the cost of using solar photovoltaic (PV) systems with storage batteries. Temperature handling of solar PV modules is one of the techniques that improve the performance of such systems by cooling the bottom surface of the PV panels. This study initially reviews the effective methods of cooling the solar modules to select a proper, cost-effective, and easy to implement one. An active fan-based cooling method is considered in this research to make ventilation underneath the solar module. A portion of the output power at a prespecified high level of battery state-of-charge (SOC) is used to feed the fans. The developed comparator circuit is used to control the power ON/OFF of the fans. A Matlab-based simulation is employed to demonstrate the power rate improvements and that consumed by the fans. The results of simulations show that the presented approach can achieve significant improvements in the efficiency of PV systems that have storage batteries. The proposed method is demonstrated and evaluated for a 1.62 kW PV system. It is found from a simultaneous practical experiment on two identical PV panels of 180 W over a full day that the energy with the cooling system was 823.4 Wh, while that without cooling was 676 Wh. The adopted approach can play a role in enhancing energy sustainability
    corecore