425 research outputs found

    LDL-cholesterol concentrations: a genome-wide association study

    Get PDF
    BACKGROUND: LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. METHODS: We used genome-wide association data from up to 11,685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290,140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. FINDINGS: In our initial scan, we found two SNPs (rs599839 [p=1.7x10(-15)] and rs4970834 [p=3.0x10(-11)]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4.3x10(-9)]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1.2x10(-33)) and rs646776 (p=4.8x10(-20)) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. INTERPRETATION: We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease

    LDLR Expression and Localization Are Altered in Mouse and Human Cell Culture Models of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the ε-4 allele of apolipoprotein E (apoE), the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR) has the highest affinity for apoE and plays an important role in brain cholesterol metabolism.Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Aβ-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of γ- and α-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network.These data suggest that increased APP expression and Aβ exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression

    Prevalence of metabolic syndrome-related disorders in a large adult population in Turkey

    Get PDF
    BACKGROUND: There are few existing large population studies on the epidemiology of metabolic syndrome-related disorders of Turkey. The purpose of this study was to assess the prevalence of metabolic syndrome-related disorders in the Turkish adult population, to address sex, age, educational and geographical differences, and to examine blood pressure, body mass index, fasting blood glucose and serum lipids in Turkey. METHODS: This study was executed under the population study "The Healthy Nutrition for Healthy Heart Study" conducted between December 2000 and December 2002 by the Health Ministry of Turkey. Overall, 15,468 Caucasian inhabitants aged over 30 were recruited in 14 centers in the seven main different regions of Turkey. The data were analyzed with the Students' t, ANOVA or Chi-Square tests. RESULTS: Overall, more than one-third (35.08 %) of the participants was obese. The hypertensive people ratio in the population was 13.66 %, while these ratios for DM and metabolic syndrome were 4.16 % and 17.91 %, respectively. The prevalence of hypertension, metabolic syndrome and obesity were higher in females than males, whereas diabetes mellitus was higher in males than females. The prevalence of metabolic syndrome and related disorders were found to be significantly different across educational attainments for both men and women. The prevalence of hypertension increased with age, while it was remarkable that in the age group of 60–69 years, prevalence of diabetes mellitus and metabolic syndrome reached a peak value and than decreased. For obesity, the peak prevalence occurred in the 50–59 year old group. The prevalence of metabolic syndrome and related disorders were found to be significantly different according to geographical region. CONCLUSION: In conclusion, high prevalence of obesity and metabolic syndrome, particularly among women, is one of the major public health problems in Turkey. Interestingly, obesity prevalence is relatively high, but the prevalence of hypertension and hypercholesterolemia is relatively low in Turkish people. Future studies may focus on elucidating the reasons behind this controversy. Our findings may be helpful in formulating public health policy and prevention strategies on future health in Turkey

    Macrophage-Specific ApoE Gene Repair Reduces Diet-Induced Hyperlipidemia and Atherosclerosis in Hypomorphic Apoe Mice

    Get PDF
    Apolipoprotein (apo) E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis.Hypomorphic apoE (Apoe(h/h)) mice expressing wildtype mouse apoE at ∼2-5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoe(h/h) allele in Apoe(h/h)LysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoe(h/h)LysM-Cre and Apoe(h/h) mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12). When fed a high-cholesterol diet (HCD) for 16 weeks, Apoe(h/h)LysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoe(h/h) mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7). On HCD, Apoe(h/h)LysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoe(h/h)LysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoe(h/h) mice (167×10(3)±16×10(3) µm(2) versus 259×10(3)±56×10(3) µm(2), n = 7). This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol.Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels

    Augmented Atherogenesis in LDL Receptor Deficient Mice Lacking Both Macrophage ABCA1 and ApoE

    Get PDF
    ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored.LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO's, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×10(3) µm(2)), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×10(3) µm(2); apoE KO: 402±78×10(3) µm(2), respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×10(3) µm(2)). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05).Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Excitation and trapping of lower hybrid waves in striations

    Get PDF
    The theory of lower hybrid (LH) waves trapped in striations in warm ionospheric plasma in the three-dimensional case is presented. A specific mechanism of trapping associated with the linear transformation of waves is discussed. It is shown analytically that such trapping can take place in elongated plasma depletions with the frequencies below and above the lower hybrid resonance frequency of the ambient plasma. The theory is applied mainly to striations generated artificially in ionospheric modification experiments and partly to natural plasma depletions in the auroral upper ionosphere. Typical amplitudes and transverse scales of the trapped LH waves excited in ionospheric modification experiments are estimated. It is shown that such waves possibly can be detected by backscattering at oblique sounding in very high frequency (VHF) and ultra high frequency (UHF) ranges

    Association of APOE polymorphism with chronic kidney disease in a nationally representative sample: a Third National Health and Nutrition Examination Survey (NHANES III) Genetic Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apolipoprotein E polymorphisms (<it>APOE</it>) have been associated with lowered glomerular filtration rate (GFR) and chronic kidney disease (CKD) with e2 allele conferring risk and e4 providing protection. However, few data are available in non-European ethnic groups or in a population-based cohort.</p> <p>Methods</p> <p>The authors analyzed 5,583 individuals from the Third National Health and Nutrition Examination Survey (NHANES III) to determine association with estimated GFR by the Modification of Diet in Renal Disease (MDRD) equation and low-GFR cases. Low-GFR cases were defined as GFR <75 ml/min/1.73 m<sup>2</sup>; additionally, GFR was analyzed continuously.</p> <p>Results</p> <p>In univariate analysis, the e4 allele was negatively associated with low-GFR cases in non-Hispanic whites, odds ratio (OR): 0.76, 95% confidence interval (CI): 0.60, 0.97. In whites, there was a significant association between increasing <it>APOE </it>score (indicating greater number of e2 alleles) and higher prevalence of low-GFR cases (OR: 1.21, 95%CI: 1.01, 1.45). Analysis of continuous GFR in whites found the e4 allele was associated with higher levels of continuous GFR (β-coefficient: 2.57 ml/min/1.73 m<sup>2</sup>, 95%CI: 0.005, 5.14); in non-Hispanic blacks the e2 allele was associated with lower levels of continuous GFR (β-coefficient: -3.73 ml/min/1.73 m<sup>2</sup>, 95%CI: -6.61, -0.84). <it>APOE </it>e2 and e4 alleles were rare and not associated with low-GFR cases or continuous GFR in Mexican Americans.</p> <p>Conclusion</p> <p>In conclusion, the authors observed a weak association between the <it>APOE </it>e4 allele and low-GFR cases and continuous GFR in non-Hispanic whites, and the <it>APOE </it>e2 allele and continuous GFR in non-Hispanic blacks, but found no association with either measure of kidney function in Mexican Americans. Larger studies including multiethnic groups are needed to determine the significance of this association.</p
    corecore