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The theory of lower hybrid �LH� waves trapped in striations in warm ionospheric plasma in the
three-dimensional case is presented. A specific mechanism of trapping associated with the linear
transformation of waves is discussed. It is shown analytically that such trapping can take place in
elongated plasma depletions with the frequencies below and above the lower hybrid resonance
frequency of the ambient plasma. The theory is applied mainly to striations generated artificially in
ionospheric modification experiments and partly to natural plasma depletions in the auroral upper
ionosphere. Typical amplitudes and transverse scales of the trapped LH waves excited in
ionospheric modification experiments are estimated. It is shown that such waves possibly can be
detected by backscattering at oblique sounding in very high frequency �VHF� and ultra high
frequency �UHF� ranges. © 2008 American Institute of Physics. �DOI: 10.1063/1.3035910�

I. INTRODUCTION

Low hybrid �LH� waves are often registered in space
plasma. They are detected in the auroral upper ionosphere,1–4

at the Earth’s magnetopause,5 in the vicinity of the Earth’s
magnetotail,6 at the dayside ionopause of Mars and Venus,7

near comets,8 etc. LH waves interact efficiently with elec-
trons along the magnetic field lines and with ions across the
magnetic field lines. Therefore they play significant role in
different physical processes associated with particle accelera-
tion, e.g., electron acceleration in the upstream region of the
bow shock,9 solar flare ion and electron acceleration,10 trans-
verse acceleration of ions in the Earth’s ionosphere,1–3 etc.

One of the challenging problems related to LH waves is
whether they are subjected to modulation instability and col-
lapse. Despite the existing theoretical prediction in the two-
dimensional �2D� case11,12 and in the three-dimensional �3D�
case13 there are no clear experimental confirmations that
such a process indeed takes place in the Earth’s ionosphere.
Moreover, the data obtained by Freja satellite suggest that
collapse of localized bursts of LH waves �spikelets� in the
upper auroral ionosphere does not exist.4

Due to the important role of LH waves in physical pro-
cesses they are actively investigated in laboratories with the
help of special devices.14,15 Unfortunately, the existence of
walls in chamber and specific ratio of the main parameters do
not allow us to model accurately in laboratory the properties
of LH waves relevant to space plasma. That is why a con-
trolled experiment in space providing the exploration of LH
waves properties and their dynamics would be of prime im-
portance. Such an experiment can be carried out with the
help of powerful high frequency �HF� radio waves acting on
the ionospheric F-layer. This action results in different non-
linear processes. Many of them can be investigated experi-
mentally by backscattering from the perturbed F-region in
HF, VHF, and UHF ranges, or directly by rockets. Plasma
and ion sound waves near the reflection height of the pump
wave were observed by VHF and UHF radars situated rather
close to the heating facility �see, e.g., Refs. 16–18�. The

experiments carried out at Tromsø and Arecibo made it pos-
sible to analyze the excitation of plasma and ion lines with
high time or high spatial resolution and to find out interesting
peculiarities of their development. In such a form this
method can be applied for the investigations of irregularities
which are not stretched along the magnetic field line. If the
irregularities are strongly elongated with respect to the mag-
netic field �e.g., striations� the oblique sounding should be
used to detect them. Many years ago such techniques was
applied successfully at Platteville and Arecibo for the inves-
tigation of artificial small-scale irregularities.19–21 It was
found that the cross section of backscattering at the radar
frequency fr decreased with the frequency growth.21 Simul-
taneously the signals at the displaced frequencies fr� fh

�fh is the heater frequency� were observed in the VHF and
UHF ranges.20 Their cross section of backscattering in-
creased with the radar frequency and achieved its maximum
in the UHF range. At the same time such signals were absent
in the HF range. At the beginning it was supposed that the
signals at displaced frequencies appeared due to excitation of
Langmuir waves.20 Later on it was concluded that at oblique
sounding the elongated upper hybrid resonance �UHR� oscil-
lations were responsible for the backscattered signals at the
frequencies fr� fh. It is not surprising that such signals were
observed only in the VHF and UHF ranges. According to the
recent theory the excited UHR waves are trapped in
striations.22 Their typical transverse sizes are much smaller
than the transverse size of striations.23 Therefore the back-
scattered signal at the frequencies fr� fh should be much
stronger in the VHF and UHF ranges than in the HF range.
Only recently, similar backscattered signals in the HF range
were observed with the help of a special digital receiver.24

Note that up to now LH waves were not detected at oblique
sounding.

Plasma perturbations caused by ionospheric modification
by powerful HF radio waves can be investigated directly on
board of a rocket crossing the heated region. Such an experi-
ment was carried out by Kelley et al.25 Transverse scales of
striations, their elongation, and relative plasma depletion in-
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side them were found in this experiment. Later on the rela-
tive electron temperature enhancement inside striations was
estimated26 and also the excitation of drift waves was
confirmed.27

It is known from the theory that LH waves should be
excited artificially in ionospheric modification experiments.28

Also, it is concluded from the analysis of the experimental
data that LH waves are generated in the process of iono-
spheric heating.29 Indeed, the downshifted maximum �DM�,
one of the most prominent features of the secondary electro-
magnetic radiation, has an off-shift from the pump frequency
equal to the lower hybrid resonance �LHR� frequency. Such
off-shift appears if LH waves are involved in the decay pro-
cess of a strong upper hybrid �UH� wave into another UH
wave with smaller frequency and LH wave.29,30 While the
processes with UH waves in ionospheric modification ex-
periments are actively investigated, see, e.g., Refs. 23, 30,
and 31, the role of LH waves generated in such experiments
and their parameters are still not clear enough. For example,
we do not know typical amplitudes of LH waves excited in
ionospheric modification experiments and their transverse
sizes. That is why to detect LH waves directly by rocket or
by backscattering from the Earth would be of prime impor-
tance. At the same time the possibility of such detection
should be investigated theoretically. Recently the authors
have published a paper discussing theoretically the mecha-
nism of LH waves trapping associated with the waves trans-
formation in elongated plasma depletions in the 2D case.32 It
was shown that the trapping of LH waves in plasma deple-
tions can take place not only for the frequencies below the
LHR frequency of the background plasma �as was discussed
theoretically before33,34� but also above it.

In the present paper the general theory of LH waves
trapping in warm inhomogeneous plasma in the 3D case is
given. The main attention is devoted to the trapping and
excitation of LH waves in small-scale striations generated
artificially in ionospheric modification experiments. Never-
theless, for completeness we consider also the trapping of
LH in natural plasma depletions in the auroral upper iono-
sphere. It is shown that the results obtained in Refs. 33 and
34 for the explanation of LH waves “spikelets” are contained
in our theory as a particular case. In relation with the planned
ionospheric experiment �see Sec. V� typical intensities and
the sizes of LH waves trapped in striations excited in iono-
spheric modification experiments are evaluated. It allows us
to estimate the possibility of LH waves detection by back-
scattering from striations at VHF and UHF frequencies. Also
the equations describing mutual transformation of electro-
static LH waves and electromagnetic whistler mode waves in
a warm inhomogeneous plasma are derived. This part could
be useful for the analysis of experimental data obtained in
space and laboratory.

II. BASIC EQUATIONS

The procedure of obtaining the linear equation describ-
ing LH waves in a homogeneous plasma is well known, see,
e.g., Ref. 35. If we take into account thermal corrections, for
pure electrostatic perturbations in a homogeneous plasma an

equation of the fourth order is easily obtained. In an inho-
mogeneous plasma the situation is more complicated. Let us
assume that the magnetic field is directed along the z-axis,
the inhomogeneity of plasma concentration exists along the
x-axis, and along the y-axis the plasma is homogeneous. The
corresponding equation describing such LH perturbations in
the linear approximation was presented by the authors in
Ref. 32. Here we are briefly reminded of the procedure of
obtaining of such an equation. Let us introduce the electric
potential for the LH perturbations in the form

� = �0�x�exp�i��t − kyy − kzz�� . �1�

The potential � is connected with the electric field E
=−��, � is the LH frequency, ky ,kz are the wave numbers
along the y and the z-axes correspondingly. From the equa-
tion of motion and the continuity equation for electrons we
find their perturbation of concentration ne. The perturbation
of ion concentration ni is obtained from the Boltzmann equa-
tion. The link between the electric potential �0 and the per-
turbations ni and ne is given by the Poisson equation. After
some transformations we arrive at the following differential
equation describing LH perturbations in a warm inhomoge-
neous plasma stretched along the magnetic field line:
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Here R��e, where �e is the Larmor radius of electrons
�e=VTe /�He, VTe and �He are the thermal velocity and the
Larmor frequency of electrons, �Pe= �4�e2Na /m�1/2,
�Pi= �4�e2Na /M�1/2 are the plasma frequencies of electrons
and ions, m and M are the masses of electron and ion, �n

characterizes the inhomogeneity of plasma along the x-axis
�n=�Na /Na�x ,Na is the ambient plasma concentration equal
to the sum of the homogeneous background concentration N0

and small negative perturbation �n�x� presenting the plasma
distribution in a depletion Na=N0+�n�x�. Note, that a more
accurate expression for the coefficient takes the form
R=�e�1+1.5Ti /Te�1/2, see, e.g., Ref. 12. In the F-region of
the ionosphere illuminated by powerful radio waves the tem-
perature of electrons Te exceeds several times the tempera-
ture of ions Ti. Due to this later on we neglect the difference
between R and �e.

In the geometric optics approximation when the depen-
dence on the x-coordinate takes the form

�0 	 exp	− i
x

kx�x1�dx1�
after the substitution of it in Eq. �2� we arrive at the follow-
ing equation:
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2 − �nky
�

�He
� = 0,

�3�

where �LHR is the LHR frequency

�LHR =
�Pi�He

��Pe
2 + �He

2 �1/2 . �4�

Note, that the LHR frequency depends on plasma concentra-
tion. Hence it varies with the x coordinate because plasma is
assumed to be inhomogeneous in this direction due to the
presence of striations. An equation similar to Eq. �3� can be
derived if the plasma is cylindrically symmetric. In this case
the inhomogeneity of the background plasma exists along
the radius r while it is homogeneous in the azimuthal direc-
tion 
.

Equation �3� determines the dispersion relation �
=��k� for LH electrostatic perturbations. Earlier solutions of
such an equation describing the trapping of LH waves in the
2D case �ky =0� were analyzed by the authors.32 It was
shown that the trapping takes place for LH waves with the
frequencies in the vicinity of the LHR frequency of the back-
ground plasma �above and below the LHR frequency de-
pending on the longitudinal wave number and the relative
depth of a depletion�. Now we would like to consider a more
general 3D case. Equation �3� without the last term �	�nky�
presents the well-known dependence of the LH wave fre-
quency on the transverse kx ,ky and the longitudinal kz wave
numbers taking into account thermal corrections, see, e.g.,
Ref. 12. The last term in this equation corresponds to the
drift motion of electrons in an inhomogeneous plasma.

The solutions of Eq. �3� are the following:

kx
2 =

A�x�
2�e

2 − ky
2 ��A�x�2

4�e
4 −

B�x�
�e

2 , �5�

where

A�x� =
�2

�LHR
2 �x�

− 1, B�x� =
M

m
�kz

2 − ky�n
�

�He
� . �6�

Later on we shall be interested in the waves with the fre-
quencies not far from the LHR frequency. Due to this the
ratio � /�He in the coefficient B approximately can be sub-
stituted by � /�He��m /M.

III. TRAPPING OF LH WAVES IN PLASMA
DEPLETIONS IN A COLD PLASMA

Earlier it was shown by the authors32 that in the 2D case
the trapping of LH waves takes place in striations for a re-
stricted range of frequencies in the vicinity of the LHR fre-
quency. The reflection of energy occurs at some point inside
plasma depletion where the function under the square root in
Eq. �5� goes through zero. In the 2D case it happens only if
we take into account the dependence of the coefficient A on
the x-coordinate. But such dependence in ionospheric plasma
depletions is often rather weak enough. Indeed, typical varia-
tion of the coefficient A in striations is estimated as �A
=�2 /�Pi

2 �n�x� /N0
10−3. In the 3D case there is another fac-

tor that influences the behavior of the function F under the
square root in Eq. �5�. In an explicit form this function F�x�
can be presented as

F�x� = 	 �2

�LHR
2 �x�

− 1�2

− 4�e
2	M

m
kz

2 −�M

m
�n�x�ky� .

�7�

It is clear that the magnitude and the sign of the function
F�x� varies with x due to the presence of the last �drift� term.
The idea that the drift of electrons influences the LH waves
trapping was introduced earlier in Refs. 33 and 34. Estimates
show than in the case of artificial plasma depletions �stria-
tions� the contribution of this drift term can be larger than
�A ·A if the perturbations are small-scale enough along the
y-axis �the ky wave number is large�. In such a case, we are
able to neglect the variations of the function A along the
x-axis and to take into account only the changes with x of the
drift term.

Let us consider different cases described by Eq. �5�. Sup-
pose first that the first term under the square root is larger
than the second term A2�4�e

2�B�x��. It means that the LH
frequency of the excited wave is not too close to the LHR
frequency of the background plasma. In such a case one of
the solutions of Eq. �5� is the following:

kx
2 =

B�x�
A

− ky
2. �8�

This solution corresponds to the dispersion relation in the
cold plasma approximation �the Larmor radius of the elec-
tron does not enter this solution�. The right-hand side of Eq.
�8� is positive if coefficients A and B are negative or positive
simultaneously and the ratio B�x� /A is large enough B /A
�ky

2. The coefficient A is definitely negative if the LH wave
frequency is less than the minimal LHR frequency. At the
same time the coefficient B�x� can be negative only due to
the input of the drift term. This case was considered previ-
ously in Refs. 33 and 34 with the aim to explain the observed
bursts of LH waves �“spikelets”� in natural plasma deple-
tions in the auroral upper ionosphere. The second case when
coefficients A and B are positive was missed in the
investigations.33,34 The coefficient A is positive for the waves
with frequencies exceeding the LHR frequency. The coeffi-
cient B is definitely positive if ky�n
0. Hence the wave
propagation in the cold plasma approximation exists both for
the frequencies either below or above the LHR frequency of
the ambient plasma.

For model Gaussian distribution of plasma in a plasma
depletion

�n = − n0 exp�− x2/a2� �9�

the coefficient �n is the following:

�n =
n0

N0

2x

a2 exp�−
x2

a2� ,

where a describes the transverse size of a striation. Later on
we discuss the conditions for wave propagation and trapping
assuming that x�0. This case corresponds also to the axial
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symmetric cavity if we substitute in the geometric optics
approximation x→r.

For the model distribution of plasma in a striation �Eq.
�9�� we find the kx number in an explicit form,

kx
2 =

M

m
	kz

2 − 2�m

M
ky

n0

N0

x

a2 exp�−
x2

a2�� �LHR
2

�2 − �LHR
2 − ky

2.

�10�

Suppose that the LH wave frequency is less than the minimal
LHR frequency �the coefficient A is negative�. It is clear
that the term in square brackets in Eq. �10� is negative for
x�0 only if the wave number ky is positive and the corre-
sponding kz numbers are small enough �kz�
� �m /M�1/4�n0 /N0�1/2�ky /a�1/2. The reflection of waves takes
place at the turning points x1,x2, where kx

2 given by Eq. �10�
becomes equal to zero. Similarly for the wave frequencies
higher than the LHR frequency the trapping can take place
only for negative ky numbers. The stationary states of the
trapped LH waves exist for such frequencies, that



x1

x2 �B�x�
A

− ky
2dx = ��n + 1/2� , �11�

where n is an integer. Equation �11� determines a discrete set
of eigenfrequencies for which the stationary states exist. It is
clear that the corresponding kx numbers �see Eq. �10�� should
not be too small and the integration region �x=x2−x1 not
too narrow. Indeed, Eq. �11� shows that the stationary states
exist only if



x1

x2

kxdx � �/2.

To find concrete values of the eigenfrequencies, let us dis-
cuss a simple analytical model with the Gaussian distribution
of plasma in a striation �see Eq. �9��. Suppose that the kz

number in Eq. �10� is so small that it can be neglected. Also
we neglect the variation of the LHR frequency in the coeffi-
cient A, assuming that �LHR=�LHR

�0� =const. In this case we
arrive at the following equation describing the trapped eigen-
states in the cold plasma approximation:



�1,n

�2,n �� exp�− �2� − �nd�

= ��n + 1/2�� m

M
�1/4�N0

n0
�1/2��LHR

�0� − �n

aky�LHR
�0� . �12�

Here,

� = x/a, �n = kya� m

M
�1/2N0

n0

�LHR
�0� − �n

�LHR
�0� .

For the first lowest trapped modes n=0,1 ,2 , . . . and �ky�a
�1 Eq. �12� is solved analytically. Indeed, near its maximum
the potential U���=� exp�−�2� can be presented as

U��� � Um +
1

2

d2U

d�2 �� − �m�2, �13�

where �m=1 /�2, Um=U��m�. After the substitution of Eq.
�13� into Eq. �12� and integration with respect to � we find
the set of eigenfrequencies �n , �n=0,1 , . . . ,nmax� in an ex-
plicit form

�n = �LHR
�0� �1 −

1

kya
�M

m

n0

N0

�	Um −
2n + 1

�ky�a
�Um exp�− 1/4��� , �14�

where 2nmax
�Umexp�1 /4��ky�a−1. It is seen from Eq. �14�
that the eigenfrequencies can be smaller or exceed the LHR
frequency depending on the sign of ky. Also it is clear that
the trapped modes with the frequencies below and above the
LHR frequency of the background plasma are localized
mainly in the regions with the largest gradients of plasma
concentration. The modes with different signs of the ky num-
ber rotate in opposite directions.33,34

Note, that the maximum of the function U���
=� exp�−�2� under the square root in the left-hand side of Eq.
�12� is Um�0.7. According to Eq. �12� the eigenvalues �n

should be always smaller than this value, hence,

��LHR
�0� − �n�
�LHR

�0� 
 0.7�M

m
�1/2 n0

N0

1

�ky�a
. �15�

At the same time the eigenfrequencies �n should not be too
close to the LHR frequency A2�2�e

2�B�. Otherwise, accord-
ing to Eq. �5�, the cold plasma approximation is not valid and
thermal effects �finite magnitude of the electron Larmor ra-
dius� should be taken into account. Due to the last restriction
we avoid singularities and discontinuities in the kx numbers
that appear in Eq. �10� if �→�LHR. An estimate for the
validity of the cold plasma approximation can be presented
in the explicit form

��LHR
�0� − �n�
�LHR

�0� � �e��ky�
a
�M

m
�1/4� n0

N0
�1/2

. �16�

It is quite clear that the conditions �15� and �16� should not
contradict to each other. It implies the following restriction
on the ky numbers:

�ky�3�e
2a � �M

m
�1/2 n0

N0
. �17�

IV. TRAPPING OF LH WAVES IN PLASMA
DEPLETIONS IN A WARM PLASMA

Now let us discuss the mechanism of trapping in a warm
plasma. As it was done previously by the authors in the 2D
case,32 we find the ratio of the group and the phase velocities
of the LH wave along the x-axis in the 3D case,
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�2 kx
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2 − �nky�m

M

�kx
2 + ky

2�2�e
2 � . �18�

This relation in the case when kz
2−�nky

�m /M �0 determines
a particular k

x

�*�
number for which the group velocity be-

comes equal to zero

k
x

�*�2
=

1

�e

�M

m
�kz

2 − �nky�m

M
�1/2

− ky
2. �19�

Assume that the frequency of the LH wave � and the wave
numbers ky and kz are such that the following conditions are
fulfilled:

�2 − �LHR
�0�2 � 2�e

2ky
2�LHR

�0�2 , �2 − �LHR
�0�2 � 2�e�kz��M

m
�LHR

�0�2 .

�20�

It means that the frequency � should be larger than the LHR
frequency. In the discussed case, according to Eq. �5�, two
types of propagating waves that correspond to plus and mi-
nus signs before the root exist. Let the ky number be nega-
tive. As the coefficient B�x� grows for x increasing from
x=0, at some particular point x1 the following relation takes
place �if the inhomogeneity is not too weak�:

�n�x1� =�m

M

1

4�e
2ky

	M

m
4�e

2kz
2 − A2� . �21�

It is easy to prove that at this point the group velocity be-
comes equal to zero and at the same time two types of waves
determined by Eq. �5� have equal kx wave numbers. Accord-
ing to the analysis presented earlier32 the transformation of
waves �with plus and minus signs� takes place at this point
x=x1. But in contrast with the 2D case discussed in Ref. 32,
the transformation is not total. For larger x values �closer to
the boundary of depletion� in the general case there is an-
other point x2 at which the same relation as Eq. �19� takes
place. So the region x1�x�x2 is not transparent for the LH
waves. In the region where x�x2 the propagation of the LH
wave once again is possible. If the leakage of energy through
the mentioned region x1�x�x2 is small enough, we may
argue that the LH wave is trapped in the inner region
x�x1. The leakage can be estimated by the coefficient of
barrier transparency P,

P � exp�−� 2

A − 2�e
2ky

2�M

m
�1/4

�ky�1/2

�

x1

x2��n�x� −�m

M

A2 − 4
M

m
kz

2�e
2

4�e
2�ky�

dx� . �22�

It is possible to consider also one more case

�2 − �LHR
�0�2 � 2�e

2ky
2�LHR

�0�2 , �2 − �LHR
�0�2 � 2�ekz�M

m
�LHR

�0�2 .

�23�

Now the trapping can exist only in some intermediate region
inside the plasma depletion x1�x�x2 for positive values of
ky. Indeed the turning points are determined similarly to Eq.
�21�. Near the center of depletion x�x1 and at large enough
distances x�x2, there is no propagation because the wave is
attenuated. Note, that the two cases considered above are
distinguished by the direction of phase velocity along the
y-axis �due to positive and negative signs of the ky wave
numbers�.

For the frequencies slightly below the LHR frequency of
the ambient plasma, thermal effects can also influence the
process of trapping in striations. Such a case was considered
previously by the authors in the 2D approximation, taking
into account the variation of the LHR frequency along the
x-axis �LHR�x�.32 Similar to the analysis presented above, in
this case the mutual transformation of different waves takes
place at the points where the group velocity is equal to zero.
If we neglect the dependence of �LHR on the x-coordinate, it
can be shown that no mutual transformation of waves exists
for the frequencies �
�LHR. At the same time, according to
Eq. �5� the propagation of LH waves is still possible in the
regions where B�x��0.

So, the LH waves trapping in plasma depletions exists
for the frequencies below the LHR frequency of the back-
ground plasma and above it. As it was shown above, to cor-
rectly analyze the trapping in the vicinity of the LHR fre-
quency, thermal effects should be taken into account. In this
case the trapping is associated with the transformation of
waves.

V. EXCITATION OF LH WAVES IN STRIATIONS

Usually it is supposed that LH waves in heating experi-
ments are excited due to the decay of a strong UHR wave
�with a pump frequency� trapped in a striation into another
UHR wave with smaller frequency and the LH wave leaking
from a striation.30 In such a case, LH oscillations with rather
broad frequency spectrum are generated. Another possibility
can be realized when LH waves are excited by two strong
UHR oscillations trapped in a striation. These UHR oscilla-
tions with different frequencies �1 and �2 are generated by
simultaneous action of two powerful ordinary HF radio
waves with the frequencies �1 and �2. The frequency of the
excited LH wave is equal to the difference of frequencies
�1−�2. In such an experiment LH waves with rather high
amplitude are generated at a given frequency �3=�1−�2.
This experiment can be carried out with the help of the ex-
isting heating facilities.

The aim of this section is to theoretically discuss the
above-mentioned planned experiment and to estimate the
typical amplitude of the LH wave and its transverse scale.
We assume that the LH wave is excited with a frequency
above the LHR frequency and this wave is also trapped in a
striation. Let us designate by the indices j=1,2 strong UHR
oscillations and by the index j=3 the LH oscillations. For
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simplicity we shall consider the excitation of LH waves
trapped inside a given striation in the 2D case.

First of all, let us prove that different LH eigenmodes
��3,n /�x that correspond to different eigenvalues �n are or-
thogonal. An approximate equation for the potential �3 fol-
lows from Eq. �2� with ky =0,

�e
2�4�3

�x4 +
�

�x
� �2

�LHR
2 − 1� ��3

�x
+

M

m
kz

2�3 = 0. �24�

The details of obtaining such an equation can be found in
Ref. 32. Let us multiply Eq. �24� for the function �3,n by
�3,m and the similar equation for �3,m by �3,n. After that we
subtract the second obtained equation from the first one and
the difference integrate with respect to x. As a result we
arrive at the relation

��3,n − �3,m� 
 ��3,n

�x

�3

�LHR
2 �x�

��3,m

�x
dx = 0. �25�

It is seen from Eq. �25� that eigenfunctions ��3,n /�x with
different indices m�n are indeed orthogonal with the weight
�0

2 /�LHR
2 .

To discuss the excitation of the LH wave trapped in a
striation we use the equation of motion for electrons with the
nonlinear term �v� �v,

�ve
�3�

�t
=

e

m
� �3 − �He�ve

�3� � H� −
Te

mNa
� ne

�3�

− �ve
�1� � �ve

�2� − �ve
�2� � �ve

�1�. �26�

Here we present the electric fields that correspond to UHR
waves in the following form:

E1,x = −
1

2

��1

�x
�x�exp	i�1t − 
z

kz
�1��z1�dz1� + c.c.,

�27�

E2,x = −
1

2

��2

�x
�x�exp	i�2t − 
z

kz
�2��z1�dz1� + c.c.,

where �1 and �2 are the potentials of the trapped UHR
waves, �1 and �2 are their frequencies, c.c. means complex
conjugate, �3=�1−�2 ,ne

�3� ,�3 are the frequency of the LH
wave, perturbation of plasma concentration, and the electric
potential related to this wave.

The continuity equation for the LH wave also contains a
nonlinear term

�

�t
ne

�3� + �N0ve
�3� + ��ne

�1�ve
�2�� + ��ne

�2�ve
�1�� = 0. �28�

The velocities ve
�1�, ve

�2� and the corresponding concentrations
ne

�1�, ne
�2� are determined from the linear equations for elec-

trons neglected for simplicity of the influence of the mag-
netic field. Indeed, in the F-region of the ionosphere usually
the pump frequencies �1, �2 are several times larger than the
Larmor frequency of the electron �He. After some transfor-
mations we arrive at the following approximate equation for
the excited LH waves:

�e
2�4�3

�x4 +
�

�x
� �3

2

�LHR
2 − 1� ��3

�x
+

M

m
kz

�3�2�3

=
e

4m�1�2

�2

�x2� ��1

�x

��2
*

�x
�

�exp�− i�
z

�kz
�1��z1� − kz

�2��z1��dz1 − kz
�3�z�� .

�29�

A similar equation was derived previously in a homogeneous
plasma with the aim to discuss the decay of a strong UHR
wave into another UHR wave with smaller frequency and the
LH wave.28 Our Eq. �29� is more general. It is valid also if
all three interacting waves are trapped inside striation. It re-
duces to the equation obtained earlier in case of a homoge-
neous plasma.28 Below we apply Eq. �29� to investigate the
excitation of LH wave by the action of two strong UHR
waves �1 and �2 with different frequencies �1 and �2.

Note, that the kz wave numbers for UHR eigenmodes
trapped inside striations according to Ref. 23 change rather
quickly with z. That is why we presented the z-dependence
for them in Eq. �27� in the form of integrals. At the same
time the LH oscillations have very weak dependence on z.
Indeed, the corresponding vertical scale for LH oscillations
is much larger than for the UHR oscillations. So, in the
present paper we neglect vertical inhomogeneity while de-
scribing the LH waves. Due to the changes along the z-axis
of the kz wave numbers, the matching conditions along this
axis kz

�1��z�=kz
�2��z�+kz

�3� are fulfilled only within a finite
range of heights, hence restricting the efficiency of the waves
transformation.

Taking into account that the functions ��3,n /�x which
correspond to different trapped eigenstates are orthogonal
�see Eq. �25��, it is reasonable to obtain an equation for such
functions. If we differentiate both sides of Eq. �29� with re-
spect to x, the solution of the obtained equation can be rep-
resented as a combination of orthogonal functions

��3

�x
= �

n

cn�z�
��3,n

�x
, �30�

where ��3,n /�x are the eigenfunctions with the eigenfre-
quencies of the trapped LH modes �3,n ,cn�z� are the coeffi-
cients describing the excitation of different modes. We
suppose that the functions ��3,n /�x are normalized. Usually
it is accepted that the norm is equal to unity
����3,n /�x�2�3

2 /�LHR
2 dx=1.

To investigate the excitation of different trapped eigen-
modes of LH we use Eqs. �29� and �30�. In deriving the
corresponding equation we take into account that �3,n are the
solutions of the homogeneous Eq. �24� with the eigenfre-
quencies �3,n. As a result we arrive at the equation
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− 2i
M

m
kz

�3��
n

�cn

�z

��3,n

�x
+ �

n

cn
�2

�x2��3,n
2 − �3

2

�LHR
2 � ��3,n

�x

=
e

4m�1�2

��3n

�x

�3

�x3� ��1

�x

��2
*

�x
�

�exp�− i�
z

�kz
�1��z1� − kz

�2��z1��dz1 − kz
�3�z�� .

�31�

Equation �31� is valid if the absolute value of the derivative

��cn /�z� is rather small ��cn /�z��kz
�3��cn�. The most efficient

excitation is expected for one particular mode cr for which
there is a resonance between the frequencies of interacting
waves with the eigenfrequency of this mode �1−�2=�3,r. To
find the relation describing the excitation of this particular
mode, first, we multiply both sizes of Eq. �31� by
�3

2 /�LHR
2 ��3,r /�x, integrate with respect to x and after that,

integrate the obtained equation with respect to z. Neglecting
for simplicity the interaction of different LH modes de-
scribed by the second term in Eq. �31� we arrive at the
relation

max�cr� =
e

8Mkz
�3��1�2

�

−�

�

exp�i�
z

�kz
�1��z1� − kz

�2��z1��dz1 − kz
�3���dz�

��
 ��3,r

�x

�3
2

�LHR
2

�3

�x3� ��1

�x

��2
*

�x
�dx� . �32�

From this relation it is seen that the efficiency of excitation,
given by the coefficient cr, is determined by the distribution
of the UH and LH oscillations in a cross section of a striation
�the functions �� j /�x� and also by the matching conditions
between the longitudinal wave numbers kz

�j� of the interacting
waves. Note, that due to the trapping all three functions
�� j /�x are wave packets localized inside a given striation.
The most efficient interaction between the waves takes place
if the transverse scale of oscillations of LH wave is close to
the characteristic size determined by the product
��1 /�x��

2
* /�x.

To estimate the magnitude of the coefficient cr we dis-
cuss the case when the profile of a striation is given by Eq.
�9�. It is convenient to introduce a new dimensionless vari-
able �=�x, where

� = � n0

N0
�1/4� �̄

���VTea
�1/2

�33�

is a characteristic wave number, �̄=�Pe�N0�, ��=3 is the
adiabatic coefficient. Near the center the Gaussian profile �9�
can be substituted by a parabolic one exp�−x2 /a2�
�1−x2 /a2. It is well known that the eigenfunctions for such
a profile are determined by Hermite polynomials.

To estimate the amplitude of the LH oscillations let us
take the distributions of two UHR waves that correspond to
the fourth and the second eigenmodes in a given striation

��1

��
= C1

1

�384���1/2 exp�−
�2

2
�H4��� , �34�

��2

��
= C2

1

�8���1/2 exp�−
�2

2
�H2��� . �35�

Here H4��� and H2��� are the Hermite polynomials of the
fourth and the second order correspondingly, C1 and C2 are

the amplitudes of the UHR waves. Note that eigenfunctions
describing the distribution of UHR waves ��1 /�� and
��2 /�� are normalized in such a way that


 � ��1,2

��
�2

d� = C1,2
2 . �36�

According to Eqs. �34� and �35� and Eq. �36� in Cartesian
coordinates �x ,y ,z� the electric fields of the UHR waves are
given by

��1

�x
=

C1�

�384���1/2 exp	−
��x�2

2
�H4��x� ,

�37�
��2

�x
=

C2�

�8���1/2 exp	−
��x�2

2
�H2��x� .

Now we need to specify the distribution of the LH wave in a
striation. For rather crude estimates we assume that the
trapped LH mode oscillates in some inner part of a striation
with the kx number kx��A /2�e

2; see Eq. �5�, where A
�2�e

�B. As a result we find the model distribution of the
LHR oscillations in a striation

��3,r

��
=

�2

�1/4����
sin�k���exp	− � �

��
�2� . �38�

Here k� is a dimensionless transverse wave number for the
trapped LH mode, given by

k� = ��M

m

kz

�e
�1/2 ����aVTe�1/2

�̄1/2 �N0

n0
�1/4

, �39�

�� is a dimensionless size of the region where the LH mode
is localized inside a given striation �determined by the turn-
ing points x0

�1� and x0
�2��. Taking into account that the ratio

�3
2 /�LHR

2 is close to unity, we assume that the function
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��3,r /�� is normalized in such a way that ����3,r /�x�2dx
=1. Now we need to substitute the introduced above distri-
butions of the UHR and LH waves into Eq. �32�. The con-
tribution to cr from the transverse distribution is given by the
integral


 ��3,r

�x

�3

�x3� ��1

�x

��2
*

�x
�dx = �5
 ��3,r

��

�3

��3� ��1

��

��2
*

��
�d� .

�40�

It is seen from Eq. �40� that the efficiency of the waves
transformation increases rapidly �	�5� for small-scale
waves. For numerical estimates we take kz�4�10−4 cm−1,
�e=1.5 cm, n0 /N0=0.06, a=5�102 cm, ��=1.6. The corre-
sponding wave number k� is equal to k��5.4.

After numerical integration with respect to � in the right-
hand side of Eq. �40� we find


 ��3,r

�x

�3

�x3� ��1

�x

��2
*

�x
�dx � − 20�9/2C1C2. �41�

As a result the amplitude of the excited LH wave takes the
form

max�cr� �
e�z

Mkz
�3��1�2

2.5�9/2C1C2, �42�

where �z describes the distance along the z-axis within
which the matching conditions for the interacting waves are
fulfilled

�

0

�z

�kz
�1��z1� − kz

�2��z1��dz1 − kz
�3��z� 


�

2
. �43�

The length �z can be estimated based on the results obtained
in Ref. 23. Assuming that kz

�1�
kz
�2�
kz

�3� we find

�z �
�He

�Pe�N0�
�Lzkz

�3��1/2

�
, �44�

where Lz is the scale of inhomogeneity along the z-axis. The
distance �z for typical conditions of the HF heating has the
order of magnitude �z
103 cm.

According to Eq. �42� the amplitude of the LH wave is
sensitive to the magnitude of the characteristic wave number
�, which in turn depends on parameters of a striation �rela-
tive depth n0 /N0 and the half-width a�. Also the LH wave
amplitude quickly grows with the increase of the UHR wave
amplitudes C1 and C2. Unfortunately, estimates based on dif-
ferent theoretical approaches give quite different values for
UHR wave amplitudes that deviate approximately two orders
of magnitude.23,31,36 Due to this it is rather difficult to obtain
reliable estimates for typical amplitudes of the LH waves
excited in heating experiments. We shall take some interme-
diate values E1
E2
5 V /m, that are close to estimates ob-
tained in Ref. 23. In this case we find an estimate of E3

��0.3−0.5� V /m for the amplitude of the excited LH wave
trapped inside striation. The corresponding relative perturba-
tions of plasma concentration with the LHR frequency due to
such a field achieves the value n�3� /N0
�0.01−0.02� and the
typical transverse wave numbers are kx�0.2−0.02 cm−1.
Probably such perturbations can be detected with the help of

VHF and UHF radars by backscattering �oblique sounding�
at displaced frequencies f = fr� fLH, where fr is the radar
frequency, fLH is the frequency of the excited LH wave.

VI. TRANSFORMATION OF ELECTROSTATIC
AND ELECTROMAGNETIC WAVES
IN THE LH FREQUENCY RANGE

Interaction between electrostatic and electromagnetic
waves in the LH frequency range attracts significant atten-
tion due to existing experimental results in space1–4 and in
laboratory plasmas.14,15 Several theoretical papers were pre-
sented to discuss the transformation of whistler mode waves
into electrostatic LH waves in a given plasma depletion with
the application to natural plasma processes in the
ionosphere.37,38

In this section we would like to analyze an opposite
case, the excitation of electromagnetic fields localized in
space LH electrostatic oscillations. The possibility to gener-
ate whistler mode waves due to the scattering on striations of
propagating LH electrostatic oscillations was analyzed pre-
viously in the stochastic approach.39 Now we consider the
excitation of a whistler mode wave by a localized wave
packet of LH waves trapped in a given striation. In previous
sections it was assumed that the electric field of the excited
LH waves is purely electrostatic. At the same time in real
conditions the electric field of the LH wave with a finite
wave number has an admixture of the solenoidal field. Also,
in the LH frequency range besides electrostatic there exist
electromagnetic whistler mode waves. These two types of
waves can have the same frequency but quite different wave
numbers. So, in the general case, the electric field consists of
potential and solenoidal parts

E = − �� − i
�

c
A , �45�

where A is the vector potential, c is the speed of light.
Hence, in our system of equations in general case appear
three more unknown quantities, components of the vector
potential Ax, Ay, and Az. It means that we need to introduce
three additional equations, which are obtained from the Max-
well equation

� � B =
4�

c
eN0�vi − ve� − i

�

c
���3 + i

�

c
A� . �46�

Here B=��A is the magnetic field of perturbation, vi, ve
are the speeds of ions and electrons in the electric field given
by Eq. �45�.

As a result, we have to deal with the system of equations
for the electric potential �3, components of the vector poten-
tial Ax ,Ay ,Az, and perturbations of concentration ne, ni. It is
convenient to use the following additional condition �Cou-
lomb gauge�:

� · A = 0. �47�

In the general case the system of equations is rather compli-
cated. Due to this let us consider its solutions in the 2D case
�ky =0� in the geometric optics approximation. Such systems
of equations can be presented in the following form:
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��LHR
2 kx

4�e
2 − ��2 − �LHR

2 �kx
2���3 −

�

kxc
Ax�

+ �He
2 kz�kz�3 −

�

c
Az� + ikx

�2�He

c
Ay = 0,

	kz
2 +

�Pi
2

c2 −
�2

c2 ��Pe
2

�He
2 + 1��Ax − i

�Pe
2 �

c2�He
Ay

−
kx

c
��Pi

2

�
−

�Pe
2 �

�He
2 − ���3 = 0,

�48�

	kx
2 + kz

2 +
�Pi

2

c2 −
�2

c2 ��Pe
2

�He
2 + 1��Ay + i

�Pe
2 �

c2�He
Ax

− i
kx

c

�Pe
2

�He
�3 = 0,

�kx
2 −

�2

c2 �Az =
�Pe

2

c�
�kz�3 −

�

c
Az� −

�

c
kz�3.

The first equation of this system describes the LH wave and
the influence of the solenoidal electric fields on it. The re-
maining three equations correspond to electromagnetic �EM�
waves interacting with the small-scale electrostatic wave.
From the last Eq. �48� we find an approximate expression for
the function Az,

Az =
�Pe

2 ckz

���Pe
2 + c2kx

2�
�3. �49�

It follows from this equation that the longitudinal electric
field

kz�3 −
�

c
Az =

c2kx
2

�Pe
2 + c2kx

2kz�3 �50�

for small scale perturbations kx
2��Pe

2 /c2 is determined by
the electrostatic potential �3. For large-scale perturbations
kx

2��Pe
2 /c2 the electromagnetic component Az causes sig-

nificant decrease of the longitudinal electric field. It is con-
venient to find the components Ax and Ay from the second
and the third Eq. �48� as the functions of the electrostatic
potential �3. Assuming for simplicity that the wave fre-
quency is close enough to the LHR frequency,

��2 − �LHR
2 � � kz

2c2 �Pe
2

�He
2

we arrive at the following approximate system of equations
instead of Eq. �48�:

	�e
2kx

4 − kx
2� �2

�LHR
2 − 1� +

M

m

c2kx
2kz

2

c2kx
2 + �Pe

2 ��3

+
�

c
� �2

�LHR
2 − 1�kxAx + i

�He

c
kxAy = 0, �51�

	�kx
2 + kz

2�kz
2 −

�Pe
4 �2

�He
2 c4 �Ax

=
�Pe

2

�Hec
	�kx

2 + kz
2�

�2 − �LHR
2

��He
−

�Pe
2 �

�Hec
2�kx�3, �52�

	�kx
2 + kz

2�kz
2 −

�Pe
4 �2

�He
2 c4 �Ay

= i
�Pe

2

�Hec
	kz

2 −
�Pe

2

�He
2 c2 ��2 − �LHR

2 ��kx�3. �53�

The left-hand sides of Eqs. �52� and �53� correspond to the
whistler mode wave. Indeed, the terms in square brackets in
the left-hand sides of Eqs. �52� and �53� coincide with the
dispersion relation for the whistler mode wave. The link with
the electrostatic LH wave is determined by the right-hand
sides.

In the quasielectrostatic limit when the k-numbers of the
excited waves are large enough,

kx
2 �

�Pe
2

c2 , �kx
2 + kz

2�kz
2 �

m

M

�Pe
4

c4 ,

Eq. �51� reduces to

	�e
2kx

4 − kx
2� �2

�LHR
2 − 1� +

M

m
kz

2 −
�Pe

2

c2 ��3 = 0. �54�

The last term in square brackets in Eq. �54� describes the
well-known EM correction and its influence on quasielectro-
static LH waves �see, e.g., Ref. 12�.

The limiting case when kz=0 should be considered sepa-
rately starting from Eq. �48�. It cannot be discussed correctly
within the system of Eqs. �51�–�53� because some approxi-
mations were made while obtaining these equations. From
the third equation in system �48� in the quasielectrostatic
approximation we find the function Ay in the following form:

Ay = i
�Pe

2

�Heckx
2�kx�3 −

�

c
Ax� . �55�

After the substitution of Eq. �55� into the first Eq. �48� we
arrive at the following equation for the combination �3

−� /ckxAx:

	�e
2kx

4 − kx
2� �2

�LHR
2 − 1� −

�Pe
2

c2 ���3 −
�

ckx
Ax� = 0. �56�

This equation describes small-scale LH perturbations along
the x-axis with the EM corrections.

The obtained above results allow us to investigate the
mutual transformation of electrostatic and EM waves in the
LH frequency range. First, let us find for which longitudinal
wave numbers our previous results �the trapping of LH
waves in 2D case� are valid in the presence of EM correc-
tions. From Eq. �54� it follows that the electromagnetic cor-
rections do not change significantly the results obtained in
Sec. III, if
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kz
2 �

�Pi
2

c2 . �57�

In relation to the ionospheric modification experiments, our
previous consideration is valid for kz numbers �kz��5
�10−6 cm−1. At the same time the characteristic kz numbers
of the HF electromagnetic pump wave are of the order of
kz��Pe /c
�3�10−4–10−3� cm−1. It is clear that the ex-
cited UH and LH waves should have the longitudinal wave
numbers of the same order of magnitude. In case of electro-
static bursts �“spikelets”� in the upper auroral ionosphere we
need to take into account that the plasma frequency and the
averaged molecular weight of ions are significantly smaller
than in the F-region. As a result for the heights z

700–1000 km we obtain a similar condition �kz��5
�10−6 cm−1.

Let us designate kz
2=Q�Pi

2 /c2, where Q is a coefficient
which according to relation �57� should be large Q�1. It
follows from Eqs. �52� and �53� that for the above mentioned
kz numbers quasielectrostatic LH waves are able to excite
propagating whistler mode waves with the frequencies of the
order of the LHR frequency if 1�Q��M /m. Indeed, for
such kz numbers the terms in square brackets in the left-hand
sides of Eqs. �52� and �53� become equal to zero for the
following kx numbers:

kx
�0� = �� �Pe

4 �2

�He
2 c4kz

2 − kz
2. �58�

The relation �58� means that propagating whistler mode
waves with the wave numbers ��kx

�0� ,kz� can be excited by a
localized source. To find the distribution of the whistler
mode waves excited by the trapped LH oscillations in the
Cartesian coordinates we need to proceed with Eqs. �52� and
�53�. Taking into account that they have similar solutions, let
us discuss the solution of Eq. �53�. In the 2D case such a
solution takes the form

Ay � i
�Pe

2

2�Heckx
�0�	1 −

�Pe
2

�He
2

�2 − �LHR
2

c2kz
2 �

�
 exp�− ikx
�0��x − x1��

��3

�x1
dx1

+ i
�Pe

2

2�Heckx
�0�	1 − 2

�Pe
2

�He
2

�2 − �LHR
2

c2kz
2 �

�
 exp�− ikx
�0��x − x1��

�n�x1�
N0

��3

�x1
dx1. �59�

Here kx
�0� is the corresponding kx wave number for the propa-

gating whistler mode wave, kx
�0���Pe

2 � /�Hec
2kz. Outside of

a striation solution �59� describes two plane waves
	exp��ikx

�0�x� propagating in opposite directions along the
x-axis from the trapped LH oscillations. According to Eq.
�59� the amplitude of the EM field is a combination of two
terms. The first integral describes freely propagating waves
with the �kx

�0� wave numbers. The second integral appears if
we take into account the interaction of the trapped LH waves
with plasma irregularities �n�x� /N0. Note that the trapped

LH oscillations are small-scale ones and hence the derivative
��3 /�x is large. Due to this the absolute value of such a term
can exceed the absolute value of the first term.

Now let us briefly discuss the case when kz numbers are
large enough kz

2�kcr
2 = �M /m�1/2�Pi

2 /c2. In this case the ex-
cited electromagnetic waves cannot propagate and they are
localized near the LH wave packet. The corresponding dis-
tribution of these electromagnetic perturbations in the
quasielectrostatic approximation takes the form

Ax = −
i�Pe

4 �

2�He
2 c3kz

3

−�

�

exp�− �kz�x − x1���
��3

�x1
dx1, �60�

Ay =
�Pe

2

2�Heckz



−�

�

exp�− �kz�x − x1���
��3

�x1
dx1. �61�

It is seen from the relations �60� and �61� that for the above-
mentioned kz numbers the EM component along the x-axis is
significantly smaller than the component directed along the
y-axis.

VII. DISCUSSION AND CONCLUSION

In this paper we have discussed the possible trapping of
LH waves in plasma depletions for two cases when thermal
effects play an important role in trapping and when they are
negligent. It should be mentioned that typical transverse
sizes of perturbations in these two cases determined by Eqs.
�10� and �19� are quite different. As the Larmor radius of the
electron in the ionosphere is very small �of the order of
1–2 cm� the corresponding kx numbers of the trapped LH
waves are much larger when thermal effects are taken into
account. In ionospheric modification experiments LH waves
are excited due to decay of a strong UHR wave into another
UHR wave with smaller frequency and LH wave. Both UHR
waves are trapped in striations and have very small trans-
verse sizes. This is confirmed by detection of UHR oscilla-
tions at oblique sounding with the help of VHF and UHF
radars.20 Hence LH waves excited artificially in heating ex-
periments also must have small transverse sizes. Because of
this, thermal effects should be taken into account while dis-
cussing LH waves trapping in relation with the ionospheric
modification experiments. In the upper auroral ionosphere
the mechanism of excitation of LH waves in plasma deple-
tions is quite different; linear transformation of large-scale
whistler mode waves on plasma irregularities. Due to this
and taking into account that natural plasma depletions have
rather large transverse sizes �20–50 m�, the trapping of LH
waves can be explained based on the cold plasma approxi-
mation.

It should be mentioned that there is a slight similarity
between the trapping of UHR and LH waves in striations. It
was shown by Mjølhus that in reality UHR waves are
quasitrapped.22 There is a leakage from striations in the form
of a large-scale electromagnetic slow extraordinary mode
�the so-called Z-mode�. As it was discussed in the present
paper, the trapping of LH oscillations in striations can also be
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accompanied by the leakage of energy. But in the latter case
the leakage exists in the form of a large-scale electromag-
netic whistler mode wave. Due to high group velocity such
artificially generated electromagnetic waves propagate for
rather large distances and can be registered in the upper
ionosphere.

In the ionospheric modification experiments UHR oscil-
lations at the heater frequency appear due to conversion of
the EM pump wave on small-scale irregularities �striations�
via resonance �or thermal parametric� instability. These elec-
trostatic UHR oscillations according to theoretical estimates
have amplitudes substantially exceeding the amplitude of the
pump wave.23,31 In the usual scheme with one wave pumping
the excited LH waves should have a rather broad frequency
spectrum and amplitudes significantly smaller than UHR os-
cillations at the heater frequency. Probably this is the reason
why the LH waves were not detected before at oblique
sounding in contrast with the UHR oscillations excited di-
rectly at the heater frequency. At the same time the results of
the rocket experiment25–27 give a hint that LH waves are
excited due to the heating. According to Kelley27 “The indi-
cated wavelengths are so short that the lower hybrid drift
mode may be the actual mode generated.”

We have suggested a particular scheme of the iono-
spheric modification experiment in which the heating takes
place simultaneously at two slightly different �of the order of
the LHR frequency� frequencies �1 and �2. Our scheme pro-
vides the excitation of LH waves first of all at a given fre-
quency �3=�1−�2 with rather high intensity. The energy of
such waves according to our analysis is not distributed in the
whole heated volume but concentrated inside striations due
to the trapping. Theoretical estimates in Sec. V show that
relative plasma perturbations associated with trapped LH
waves could achieve the values of the order of a few percent
and have the transverse wave numbers kx
0.2–0.02 cm−1. It
means that such LH oscillations can probably be detected at
oblique sounding by sensitive VHF or UHF radars. A special
digital receiver similar to that one used recently in experi-
ments utilizing oblique sounding in the HF range24,40 would
be of prime importance. Time dependence of intensity and
Doppler spectrum of the backscattered signal at the displaced
frequencies fr� fLH are able to provide important informa-
tion about physical processes in which LH waves take place.
For example, the similarity of the Doppler spectrum at dis-
placed frequencies fr� fLH and at the radar frequency fr

would confirm that LH waves are trapped and move with
striations. Also such measurements can demonstrate if the
collapse of LH waves indeed exists at high pump powers in
ionospheric modification experiments.
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