4,408 research outputs found
Quantum trajectories of interacting pseudo-spin-networks
We consider quantum trajectories of composite systems as generated by the
stochastic unraveling of the respective Lindblad-master-equation. Their
classical limit is taken to correspond to local jumps between orthogonal
states. Based on statistical distributions of jump- and inter-jump-distances we
are able to quantify the non-classicality of quantum trajectories. To account
for the operational effect of entanglement we introduce the novel concept of
"co-jumps".Comment: 15 pages, 12 figure
"Portugiesische Redewendungen" : Fraseologia para aprendizes de L. E.
Rezension zu Stefan Ettinger, Manuela Nunes: Portugiesische Redewendungen – Ein Wörter- und Übungsbuch für Fortgeschrittene. Helmut Buske Verlag Hamburg, 2006, 151 S
Optical Quantum Computation with Perpetually Coupled Spins
The possibility of using strongly and continuously interacting spins for
quantum computation has recently been discussed. Here we present a simple
optical scheme that achieves this goal while avoiding the drawbacks of earlier
proposals. We employ a third state, accessed by a classical laser field, to
create an effective barrier to information transfer. The mechanism proves to be
highly efficient both for continuous and pulsed laser modes; moreover it is
very robust, tolerating high decay rates for the excited states. The approach
is applicable to a broad range of systems, in particular dense structures such
as solid state self-assembled (e.g., molecular) devices. Importantly, there are
existing structures upon which `first step' experiments could be immediately
performed.Comment: 5 pages including 3 figures. Updated to published versio
On the concept of pressure in quantum mechanics
Heat and work are fundamental concepts for thermodynamical systems. When
these are scaled down to the quantum level they require appropriate embeddings.
Here we show that the dependence of the particle spectrum on system size giving
rise to a formal definition of pressure can, indeed, be correlated with an
external mechanical degree of freedom, modelled as a spatial coordinate of a
quantum oscillator. Under specific conditions this correlation is reminiscent
of that occurring in the classical manometer.Comment: 7 pages, 3 figure
Measurement models for time-resolved spectroscopy: a comment
We present an exactly solvable model for photon emission, which allows us to
examine the evolution of the photon wavefunction in space and time. We apply
this model to coherent phenomena in three-level systems with a special emphasis
on the photon detection process.Comment: 14 pages RevTex, 4 figure
Local Versus Global Thermal States: Correlations and the Existence of Local Temperatures
We consider a quantum system consisting of a regular chain of elementary
subsystems with nearest neighbor interactions and assume that the total system
is in a canonical state with temperature . We analyze under what condition
the state factors into a product of canonical density matrices with respect to
groups of subsystems each, and when these groups have the same temperature
. While in classical mechanics the validity of this procedure only depends
on the size of the groups , in quantum mechanics the minimum group size
also depends on the temperature ! As examples, we apply our
analysis to a harmonic chain and different types of Ising spin chains. We
discuss various features that show up due to the characteristics of the models
considered. For the harmonic chain, which successfully describes thermal
properties of insulating solids, our approach gives a first quantitative
estimate of the minimal length scale on which temperature can exist: This
length scale is found to be constant for temperatures above the Debye
temperature and proportional to below.Comment: 12 pages, 5 figures, discussion of results extended, accepted for
publication in Phys. Rev.
Out of plane analysis for composite structures
Simple two dimensional analysis techniques were developed to aid in the design of strong joints for integrally stiffened/bonded composite structures subjected to out of plane loads. It was found that most out of plane failures were due to induced stresses arising from rapid changes in load path direction or geometry, induced stresses due to changes in geometry caused by buckling, or direct stresses produced by fuel pressure or bearing loads. While the analysis techniques were developed to address a great variety of out of plane loading conditions, they were primarily derived to address the conditions described above. The methods were developed and verified using existing element test data. The methods were demonstrated using the data from a test failure of a high strain wingbox that was designed, built, and tested under a previous program. Subsequently, a set of design guidelines were assembled to assist in the design of safe, strong integral composite structures using the analysis techniques developed
Pattern formation in quantum Turing machines
We investigate the iteration of a sequence of local and pair unitary
transformations, which can be interpreted to result from a Turing-head
(pseudo-spin ) rotating along a closed Turing-tape ( additional
pseudo-spins). The dynamical evolution of the Bloch-vector of , which can be
decomposed into primitive pure state Turing-head trajectories, gives
rise to fascinating geometrical patterns reflecting the entanglement between
head and tape. These machines thus provide intuitive examples for quantum
parallelism and, at the same time, means for local testing of quantum network
dynamics.Comment: Accepted for publication in Phys.Rev.A, 3 figures, REVTEX fil
- …